Verifiable measurement-based quantum computation on hypergraph states

<u>References</u>:

- Phys. Rev. X 8, 021060 (2018)
- npj Quantum Inf. 5, 27 (2019)
- Sci. Rep. 9, 13585 (2019)
- arXiv:2006.05416 (2020)
- Phys. Rev. A **106**, 012405 (2022)
- arXiv:2312.16433 (2023)

Yuki Takeuchi

NTT Communication Science Labs. NTT Research Center for Theoretical Quantum Information 11:30 - 12:00, 22 Feb. 2024

Quantum TUT workshop

[1] K. Fujii, *Quantum Computation with Topological Codes: From Qubit to Topological Fault-Tolerance* (2015).
[2] J. Anders, D. K. L. Oi, E. Kashefi, D. E. Browne, and E. Andersson, Phys. Rev. A 82, 020301(R) (2010).

Universal quantum computation models

They have their own advantage and disadvantage.

[R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).]

MBQC: a computation model specific to quantum computation

- Its computational power is equivalent to that of the quantum circuit model.
- It utilizes entangled states.

[R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).]

MBQC: a computation model specific to quantum computation

- Its computational power is equivalent to that of the quantum circuit model.
- It utilizes entangled states.

[R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).]

MBQC: a computation model specific to quantum computation

- Its computational power is equivalent to that of the quantum circuit model.
- It utilizes entangled states.

2.

 $CZ \equiv |0\rangle \langle 0| \otimes I + |1\rangle \langle 1| \otimes Z$ Measure qubits one by one. $|+\rangle \equiv (|0\rangle + |1\rangle)/\sqrt{2}$

[R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).]

MBQC: a computation model specific to quantum computation

- Its computational power is equivalent to that of the quantum circuit model.
- It utilizes entangled states.

2.

 $CZ \equiv |0\rangle \langle 0| \otimes I + |1\rangle \langle 1| \otimes Z$ Measure qubits one by one. $|+\rangle \equiv (|0\rangle + |1\rangle)/\sqrt{2}$

[R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).]

MBQC: a computation model specific to quantum computation

- Its computational power is equivalent to that of the quantum circuit model.
- It utilizes entangled states.
- 2. Measure qubits one by one.

[R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).]

MBQC: a computation model specific to quantum computation

- Its computational power is equivalent to that of the quantum circuit model.
- It utilizes entangled states.
- 2. Measure qubits one by one.

Disadvantage of MBQC

A single quantum gate requires a single qubit.

[R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).]

Advantage of MBQC

1. Preparation of cluster state

- Two-qubit operations are necessary.
- This step is independent of quantum algorithms.

2. Single-qubit measurements

- Only single-qubit operations are necessary.
- This step depends on quantum algorithms.

[R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).]

Applications of MBQC

- Linear optical quantum computing [M. Gimeno-Segovia, P. Shadbolt, D. E. Browne, and T. Rudolph, Phys. Rev. Lett. 115, 020502 (2015).]
- Quantum cryptography (blind quantum computation) [J. F. Fitzsimons, npj Quantum Inf. 3, 23 (2017).]
- Condensed matter physics (e.g., BQP-completeness of partition functions)

[A. Matsuo, K. Fujii, and N. Imoto, Phys. Rev. A 90, 022304 (2014).]

- Quantum computational supremacy (non-adaptive MBQC) [M. J. Bremner, R. Jozsa, and D. J. Shepherd, Proc. R. Soc. A 467, 459 (2011).]
- Resource theory (e.g., GHZ states + XOR = universal classical computation)

[J. Anders and D. E. Browne, Phys. Rev. Lett. 102, 050502 (2009).]

- Quantum error correction (3D cluster states) [R. Raussendorf, J. Harrington, and K. Goyal, Annals of Physics **321**, 2242 (2006).]
- **Quantum computational theory (e.g., QMA)** [T. Morimae, D. Nagaj, and N. Schuch, Phys. Rev. A **93**, 022326 (2016).]

Verification of quantum computation

[A. Gheorghiu, T. Kapourniotis, and E. Kashefi, Theory Comput. Syst. 63, 715 (2019).]

Universal resource states for MBQC

Hypergraph states

[M. Rossi, M. Huber, D. Bruß, and C. Macchiavello, New J. Phys. 15, 113022 (2013).]

Graph states (e.g., cluster states)

Hypergraph states: a generalization of graph states

Usefulness of hypergraph states

1. Universality for Pauli MBQC

The Union Jack state enables us to perform universal MBQC with **Pauli-***X*, *Y*, and *Z* measurements.

(b)

Due to the Gottesman-Knill theorem, it is impossible for graph states.

[J. Miller and A. Miyake,

Usefulness of hypergraph states

1. Universality for Pauli MBQC

The Union Jack state enables us to perform universal MBQC with **Pauli-***X***,** *Y***, and** *Z* **measurements**.

Due to the Gottesman-Knill theorem, it is impossible for graph states.

[J. Miller and A. Miyake,

<u>Our result</u>

Pauli-X and Z measurements are sufficient for universal MBQC on hypergraph states.

[YT, T. Morimae, and M. Hayashi, Sci. Rep. 9, 13585 (2019).]

 $|\pm\rangle \equiv \frac{|0\rangle \pm |1\rangle}{\sqrt{2}}$

Fact 1 [Y. Shi, arXiv:qunt-ph/0205115 (2002).]

Any quantum computation (with classical output) can be realized by combining

$$H \equiv |+\rangle \langle 0| + |-\rangle \langle 1|$$

$$CCZ \equiv |0\rangle \langle 0| \otimes I^{\otimes 2} + |1\rangle \langle 1| \otimes CZ$$

$$I \equiv |0\rangle \langle 0| + |1\rangle \langle 1|.$$

[YT, T. Morimae, and M. Hayashi, Sci. Rep. 9, 13585 (2019).]

 $|\pm\rangle \equiv \frac{|0\rangle \pm |1\rangle}{\sqrt{2}}$

Fact 1 [Y. Shi, arXiv:qunt-ph/0205115 (2002).]

Any quantum computation (with classical output) can be realized by combining

$$H \equiv |+\rangle \langle 0| + |-\rangle \langle 1|$$

$$CCZ \equiv |0\rangle \langle 0| \otimes I^{\otimes 2} + |1\rangle \langle 1| \otimes CZ$$

$$I \equiv |0\rangle \langle 0| + |1\rangle \langle 1|.$$

[YT, T. Morimae, and M. Hayashi, Sci. Rep. 9, 13585 (2019).]

 $|\pm\rangle \equiv \frac{|0\rangle \pm |1\rangle}{\sqrt{2}}$

Fact 1 [Y. Shi, arXiv:qunt-ph/0205115 (2002).]

Any quantum computation (with classical output) can be realized by combining

$$H \equiv |+\rangle \langle 0| + |-\rangle \langle 1|$$

$$CCZ \equiv |0\rangle \langle 0| \otimes I^{\otimes 2} + |1\rangle \langle 1| \otimes CZ$$

$$I \equiv |0\rangle \langle 0| + |1\rangle \langle 1|.$$

Our result: Pauli-*X*, *Z* universal hypergraph state [YT, T. Morimae, and M. Hayashi, Sci. Rep. 9, 13585 (2019).]

Our idea: we embed these three quantum gates into a hypergraph state.

We realize

- "Moving" operation
- "Cutting" operation

by using MBQC on hypergraph states.

[YT, T. Morimae, and M. Hayashi, Sci. Rep. 9, 13585 (2019).]

Fact 2: Gate teleportation & break operation

[R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).]

• Gate teleportation ("moving" operation)

• Break operation ("cutting" operation)

Our result: Pauli-X, Z universal hypergraph state [YT, T. Morimae, and M. Hayashi, Sci. Rep. 9, 13585 (2019).]

Identity gate *I*

Input state

Output state

Our result: Pauli-*X*, *Z* universal hypergraph state [YT, T. Morimae, and M. Hayashi, Sci. Rep. 9, 13585 (2019).]

[YT, T. Morimae, and M. Hayashi, Sci. Rep. 9, 13585 (2019).]

Identity gate *I* CCZHHH = IΗ Gate teleportation Input state Output state

[YT, T. Morimae, and M. Hayashi, Sci. Rep. 9, 13585 (2019).]

Universal hypergraph state

computation

<u>*d*-depth quantum computation with *n* input qubits</u>

• The size (i.e., the number of qubits) of our hypergraph states is

$$O(dn^4)$$

• Our hypergraph state is computationally universal.

[YT, T. Morimae, and M. Hayashi, Sci. Rep. 9, 13585 (2019).]

<u>*d*-depth quantum computation with *n* input qubits</u>

• The size (i.e., the number of qubits) of our hypergraph states is

- Our hypergraph state is computationally universal.
 - + Catalytic transformation

+ Sorting network

Strict universality

(a)

with three Pauli measurements

[YT, arXiv:2312.16433 (2023).]

Optimal size (up to log factor)

 $O(dn \log n)$

[H. Yamasaki, K. Fukui, **YT**, S. Tani, and M. Koashi, arXiv:2006.05416 (2020).]

Comparison with graph states

	Computational universality	Strict universality	Class
Graph states	X, Y, TXT^{\dagger}	X, Y, TXT^{\dagger}	Stabilizer states
Hypergraph states	X, Z	X, Y, Z	Non-stabilizer states
		γ	J

Advantage of hypergraph states

Comparison with graph states

	Computational universality	Strict universality	Class
Graph states	X, Y, TXT^{\dagger}	X, Y, TXT^{\dagger}	Stabilizer states
Hypergraph states	<i>X, Z</i>	X, Y, Z	Non-stabilizer states
	L Advantage of hy	pergraph states	

Q. How hard to estimate the fidelity between ideal and actuallyprepared hypergraph states?

Comparison with graph states

	Computational universality	Strict universality	Class
Graph states	X, Y, TXT^{\dagger}	X, Y, TXT^{\dagger}	Stabilizer states
Hypergraph states	<i>X, Z</i>	X, Y, Z	Non-stabilizer states
	Advantage of hy	pergraph states	

Q. How hard to estimate the fidelity between ideal and actuallyprepared hypergraph states?

A. Pauli-X and Z measurements are sufficient, which is the same as graph states. [YT and T. Morimae, Phys. Rev. X 8, 021060 (2018).]

[YT and T. Morimae, Phys. Rev. X 8, 021060 (2018).]

By measuring appropriate qubits in the **Pauli-Z basis**,

any (polynomial-time-generated) hypergraph state reduces to graph states.

Ex.)

Measure the second qubit in the Pauli-Z basis.

[YT and T. Morimae, Phys. Rev. X 8, 021060 (2018).]

By measuring appropriate qubits in the Pauli-Z basis,

any (polynomial-time-generated) hypergraph state reduces to graph states.

Ex.)

Measure the second qubit in the Pauli-Z basis.

[YT and T. Morimae, Phys. Rev. X 8, 021060 (2018).]

<u>Theorem</u>

If the received state ρ passes our verification protocol, then

$$\langle HG|\rho|HG\rangle \ge 1 - O(1/n)$$

is guaranteed with significance level O(1/n).

|HG
angle : Hypergraph state

<u>Remark</u>

- 1. Pauli-*X* and *Z* measurements are sufficient.
- 2. The sample complexity is $O(n^{21})$. It increases only a polynomial number of samples.
- 3. Due to the quantum de Finetti theorem [K. Li and G. Smith, Phys. Rev. Lett. 114, 160503 (2015).], the i.i.d. property of quantum states is unnecessary.

[YT and T. Morimae, Phys. Rev. X 8, 021060 (2018).]

Recent progress

- 1. In our protocol, Pauli-X and Z measurements are sufficient.
- → When the noise is the thermal or phase-flip noise, a single measurement setting is sufficient for some hypergraph states. [K. Akimoto, S. Tsuchiya, R. Yoshii, and YT, Phys. Rev. A 106, 012405 (2022).]
- 2. Our sample complexity is $O(n^{21})$.
- \rightarrow It was improved to $O(n \log n)$, which should be optimal. [H. Zhu and M. Hayashi, Phys. Rev. Applied **12**, 054047 (2019).]
- 3. Our protocol is applicable to **qubit** hypergraph states.
- \rightarrow It was extended to
 - Qudit hypergraph states [H. Zhu and M. Hayashi, Phys. Rev. Applied 12, 054047 (2019).], and
 - Continuous-variable hypergraph states.
 [YT, A. Mantri, T. Morimae, A. Mizutani, and J. F. Fitzsimons, npj Quantum Inf. 5, 27 (2019).]