Decoding quantum information and complementarity principle

Yoshifumi Nakata

(YITP, Kyoto University)

T. Matsuura (RIMT, Australia), and M. Koashi (The University of Tokyo)

arXiv:2210.06661

February 22, 2024 @Quantum TUT workshop

Introduction Decoding QECCs

1

Summary of the results Decoding general QECCs

Decoding circuits for general QECCs From CSS codes to general QECCs

Introduction Decoding QECCs

1

Summary of the result

Decoding circuits for general QECCs

Decoding QECCs

Quantum Error Correction (QEC)

• QEC is a method to effectively cancel quantum noise by encoding and decoding.

Explicitly constructing a <u>decoder</u> is important but non-trivial.

Decoding stabilizer codes is, in principle, straightforward.

 \succ Syndrome measurement \rightarrow classically decode Z- and X-errors.

How can we decode non-stabilizer codes?

Decoding the toric code

Decoding QECCs

Why non-stabilizer codes?

- 1. In general, non-stabilizer codes achieve higher <u>encoding rates</u> than stabilizer codes.
 - \succ E.g., the encoding rate of the toric code $\rightarrow 0$ as $n \rightarrow \infty$.
- 2. In theoretical physics, people are interested in **OEC**, **quantum chaos, and quantum gravity**.
 - Non-stabilizer codes are important.

How can we decode non-stabilizer codes?

Decoding QECCs

What is known about decoding non-stabilizer codes?

Use the *Petz recovery map*.

[Barnum & Knill, JMP, 2002] [Beigi, Datta, and Leditzky, JMP2016]

> Q. algorithm for Petz is known [Gilyen et al, PRL, 2022], but it is **inefficient** and **not easy to break down**.

• An alternative approach to decoding non-stabilizer codes?

Results today

Decoding methods of stabilizer codes can be extended to <u>general QECCs</u> (in a certain sense). 1.

In the extension, the complementarity principle comes into play. 2.

Summary of the results Decoding general QECCs

Decoding circuits for general QECCs

Decoding general QECCs

Main result

Goal: to construct a decoding quantum circuit for general encodings and noisy channels.

> Our idea is to combine two decoding POVMs for two types of classical info.

For stabilizer codes, we infer the Z- and X-error from the syndrome measurements.

Decoding general QECCs

Decoding classical and quantum information 1

Decoding **classical** information (=decoding a CQ channel) by a POVM

Decoding error: $\Delta_E = 2^{-k} \sum_{i \neq j} \operatorname{Tr} [M_{E,i} \varrho_j]$ POVM M_E $i \in \{1 \dots, 2^k\}$ Succeed in decoding iff i = j

 M_F Succeed in decoding iff $\beta = \alpha$ $\beta \in \{1, ..., 2^k\}$

Decoding error: $\Delta_F = 2^{-k} \sum_{\beta \neq \alpha} \operatorname{Tr} \left[M_{F,\beta} \sigma_{\alpha} \right]$

Decoding general QECCs

Decoding classical and quantum information 2

Decoding **classical** information (=decoding a CQ channel) by a POVM

$$\Delta_E = 2^{-k} \sum_{i \neq j} \operatorname{Tr} \left[M_{E,i} \varrho_j \right]$$
POVM *M*_E

Decoding **quantum** information by a quantum channel

$\Delta_F = 2^{-k} \sum_{\beta \neq \alpha} \operatorname{Tr} \left[M_{F,\beta} \sigma_{\alpha} \right]$ POVM M_F

Decoding error of quantum information by the decoder \mathcal{D} $\Delta_Q = \frac{1}{2} \|\Psi - |\Phi\rangle \langle \Phi\|_{1}$

Decoding general QECCs

Main result

Theorem

Given an encoder \mathcal{E} and a noisy map \mathcal{N} , let M_E and M_F be POVMs that decode classical info in the E- and F-basis with error Δ_E and Δ_F , resp. From these POVMs, a decoding circuit for quantum info can be explicitly constructed, whose decoding error Δ_O satisfies

$$\Delta_{\mathbf{Q}} \le \sqrt{\Delta_E (2 - \Delta_E)} + \sqrt{\Delta_F} + \sqrt{2}$$

where $\Xi(E, F)$ quantifies how mutually-unbiased the bases E and F are

$$\overline{E(E,F)},$$

Decoding general QECCs

Main result

Theorem

Given an encoder \mathcal{E} and a noisy map \mathcal{N} , let M_F and M_F be POVMs that decode classical info in the E- and F-basis with error Δ_E and Δ_F , resp. From these POVMs, a decoding circuit for quantum info can be explicitly constructed, whose decoding error Δ_0 satisfies

 $\Delta_{\mathbf{Q}} \leq \sqrt{\Delta_E (2 - \Delta_E)} + \sqrt{\Delta_F} + \sqrt{\Xi(E, F)},$

where $\Xi(E, F)$ quantifies how mutually-unbiased the bases E and F are.

Decoding general QECCs

Mutually-unbiased bases and $\Xi(E, F)$

D A pair of two (orthonormal) bases (*E*, *F*) is called <u>mutually-unbiased bases (MUB)</u> iff

 $|\langle \alpha_F | j_E \rangle| = 1/\sqrt{2^k}$ for all $\alpha, j \in \{1, \dots, 2^k\}$.

 \succ One of the common characterization of "complementarity" of two bases.

D To define the quantity $\Xi(E, F)$...

 \succ Let p_{α} be a probability distribution $p_{\alpha} = \{p_{\alpha(j)} \coloneqq |\langle \alpha_F | j_E \rangle|^2\}_{j=1}^{2^k}$. > Classical infidelity: $\overline{F}(p_{\alpha}, p_{\beta}) = 1 - \sum_{j=1}^{2^{k}} \sqrt{p_{\alpha(j)} p_{\beta(j)}}$.

 $\Xi(E,F) = \max_{\alpha \in \{1,\ldots,2^k\}} \overline{F}(\operatorname{unif}, p_{\alpha}), \text{ where unif is the uniform dist. over } \{1,\ldots,2^k\}.$

 $\succ \Xi(E,F) = 0$ iff (E,F) is MUB & $\Xi(E,F) = 1$ iff E = F. $\rightarrow \Xi(E,E)$ quantifies the degree of MUB.

Decoding general QECCs

Main result

From the two POVMs that decodes **complementary classical info**, we can explicitly construct a **decoding circuit** for **quantum** info.

Theorem

Given an encoder \mathcal{E} and a noisy map \mathcal{N} , let M_E and M_F be POVMs that decode classical info in the E- and F-basis with error Δ_E and Δ_F , resp. From these POVMs, a decoding circuit for quantum info can be explicitly constructed, whose decoding error Δ_O satisfies

$$\Delta_{\rm Q} \le \sqrt{\Delta_E (2 - \Delta_E)} + \sqrt{\Delta_F} + \sqrt{2}$$

where $\Xi(E, F)$ quantifies how mutually-unbiased the bases E and F are.

$$\Xi(E,F),$$

Decoding general QECCs

Implications of our result

In Natural that complementarity comes into play in decoding quantum information.

- N. Bohr: "to characterize a quantum system, we need complementary information, such as position and momentum".
- Our result shows the significance of the complementary feature in QEC.

Our final goal: to construct a decoding circuit for general QECCs

Our result makes a good step: it breaks down a guantum decoder to POVMs for classical info.

Summary of the results

Decoding circuits for general QECCs

From CSS codes to general QECCs

Decoding general QECCs

Extending the decoder of CSS codes to general QECCs 1

Our idea

To extend the decoder of CSS codes to general QECCs

 \Box CSS codes are stabilizer codes made of two classical linear codes C_1 and C_2 .

 \succ C_1/C_2 defines the logical-Z basis, and C_2^{\perp}/C_1^{\perp} the logical-X basis.

$$|\bar{j}\rangle_Z \propto \sum_{\omega \in C_2} |j + \omega\rangle$$

$$|\bar{\alpha}\rangle_X \propto \sum_{v \in C_1^{\perp}} |\alpha|$$

Decoding CSS codes.

- **1.** Syndrome measurements \rightarrow error syndromes $\in \{\pm 1\}^{n-k}$.
- Decode the Z info by the decoder f_1 of C_1/C_2 and the X info by f_2 of C_2^{\perp}/C_1^{\perp} . 2.

Doesn't seem to be extendable to non-stabilizer codes...., but possible!

+v

Decoding general QECCs

Extending the decoder of CSS codes to general QECCs 2

Decoding circuit for a CSS code.

Decoding general QECCs

Extending the decoder of CSS codes to general QECCs 3

Decoding circuit for an general QECC.

Goal: to transform a noisy GHZ to MES!

If the two bases are NOT MUB, this transformation is approximate.

Feedback (apply the Pauli-*Z*)

Decoding general QECCs

Decoding error analysis: end

 \Box Decoding error = (State is approx. a noisy GHZ) + (Error on transforming the noisy GHZ \rightarrow MES)

Decoding general QECCs

Decoding circuits –similarity and difference-

Decoding circuits for CSS codes and non-stabilizer codes

- In both cases, controlize one measurement, and use the other for measurement & feedback.
- Decoding error is $\Delta_0 = \sqrt{\Delta_Z + \Delta_X}$ for CSS, and $\Delta_0 \leq \sqrt{\Delta_E (2 \Delta_E)} + \sqrt{\Delta_F}$ for non-stabilizer (when (E, F) is MUB).
- This is due to the **back-action of the measurement**. No back-action in CSS, but it exists in general.

Summary of the results

Decoding circuits for general QECCs

Decoding and complementarity principle

Theorem

Given encoder \mathcal{E} and a noisy map \mathcal{N} , let M_E and M_F be POVMs that decode classical info in the E- and F-basis with error Δ_E and Δ_F , resp. From these POVMs, a decoder \mathcal{D} for quantum info can be explicitly constructed, whose decoding error Δ_O satisfies

Conclusion

$$\Delta_{Q} \leq \sqrt{\Delta_{E}(2 - \Delta_{E})} + \sqrt{\Delta_{F}} + \Xi(E, F),$$

tually-unbiased the bases *E* and *F* are ($\Xi(E, F) = 0 \Leftrightarrow (E, F)$ is MUB).

where $\Xi(E, F)$ quantifies how mu

□ From the two POVMs that decodes classical info defined in the MUB, we can explicitly construct a decoding circuit for quantum info.

> Complementarity (in the sense of MUB) is important in decoding quantum information.

Conclusion k qubits **Decoding and complementarity principle**

- **1.** How can we find good POVMs for classical info?
 - > Our result is just to convert **POVMs** to a **quantum decoder**.
 - > A PGM should work, but it's explicit construction by quantum circuits is not straightforward.

 \rightarrow Our recent result: a decoder can be explicitly constructed from scratch (TBA).

- 2. The bound is probably NOT tight.
 - \succ We provided one construction of a decoder \mathcal{D} . A better construction may exist.
 - \succ In certain cases, $\Delta_Q = 0$ when Δ_E , $\Delta_F = 0$ even if (*E*, *E*) is NOT MUB.

 \rightarrow MUBness should appear in the bound in a different form.

Thank you

for your attention

arXiv:2210.06661

Special Thanks to

