Quantum measurements constrained by the third law of thermodynamics

M. Hamed Mohammady and Takayuki Miyadera

Quantum TUT Workshop 22nd Feb 2024 Toyohashi University of Technology

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 801505

• Operational formulation of the third law for channels

- Operational formulation of the third law for channels
- Quantum measurements

- Operational formulation of the third law for channels
- Quantum measurements
- Measurements constrained by the third law

Operational formulation of the third law for channels

• The third law states that systems can't be cooled to absolute zero temperature

- The third law states that systems can't be cooled to absolute zero temperature
- At thermal equilibrium with temperature T, a finite quantum system with Hamiltonian H is in a Gibbs state $\tau(H,T) := e^{-\frac{H}{T}}/\text{tr}[e^{-\frac{H}{T}}]$

- The third law states that systems can't be cooled to absolute zero temperature
- At thermal equilibrium with temperature T, a finite quantum system with Hamiltonian H is in a Gibbs state $\tau(H,T) := e^{-\frac{H}{T}}/\text{tr}[e^{-\frac{H}{T}}]$
- $\tau(H,T)$ has full rank when T > 0, and low rank when T = 0

- The third law states that systems can't be cooled to absolute zero temperature
- At thermal equilibrium with temperature T, a finite quantum system with Hamiltonian H is in a Gibbs state $\tau(H,T) := e^{-\frac{H}{T}}/\text{tr}[e^{-\frac{H}{T}}]$
- $\tau(H,T)$ has full rank when T > 0, and low rank when T = 0
- A channel $\Phi : \tau(H,T) \mapsto \tau(H,0)$ violates the third law

- The third law states that systems can't be cooled to absolute zero temperature
- At thermal equilibrium with temperature T, a finite quantum system with Hamiltonian H is in a Gibbs state $\tau(H,T) := e^{-\frac{H}{T}}/\text{tr}[e^{-\frac{H}{T}}]$
- $\tau(H,T)$ has full rank when T > 0, and low rank when T = 0
- A channel $\Phi : \tau(H,T) \mapsto \tau(H,0)$ violates the third law

Definition. A channel $\Phi : \mathcal{L}(\mathcal{H}) \to \mathcal{L}(\mathcal{K})$ is constrained by the third law if for all states ρ on \mathcal{H} ,

$$\frac{\operatorname{rank}(\Phi(\rho))}{\dim(\mathcal{K})} \ge \frac{\operatorname{rank}(\rho)}{\dim(\mathcal{H})}$$

• State preparations on \mathcal{H} are represented by channels

$$\mathcal{P}(\mathcal{H}) := \{ \Phi : \mathcal{L}(\mathbb{C}^1) \to \mathcal{L}(\mathcal{H}) \}$$

G. Gour and M. M. Wilde, IEEE International Symposium on Information Theory $\left(2020\right)$

• State preparations on \mathcal{H} are represented by channels

$$\mathcal{P}(\mathcal{H}) := \{ \Phi : \mathcal{L}(\mathbb{C}^1) \to \mathcal{L}(\mathcal{H}) \}$$

G. Gour and M. M. Wilde, IEEE International Symposium on Information Theory (2020)

• The only state on $\mathbb{C}^1 \equiv \mathbb{C} |\Omega\rangle$ is $|\Omega\rangle\langle\Omega|$, which has full-rank in \mathbb{C}^1

• State preparations on \mathcal{H} are represented by channels

$$\mathcal{P}(\mathcal{H}) := \{ \Phi : \mathcal{L}(\mathbb{C}^1) \to \mathcal{L}(\mathcal{H}) \}$$

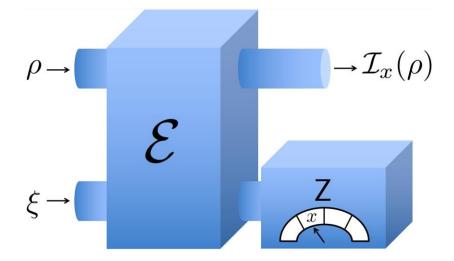
G. Gour and M. M. Wilde, IEEE International Symposium on Information Theory (2020)

• The only state on $\mathbb{C}^1 \equiv \mathbb{C} |\Omega\rangle$ is $|\Omega\rangle\langle\Omega|$, which has full-rank in \mathbb{C}^1

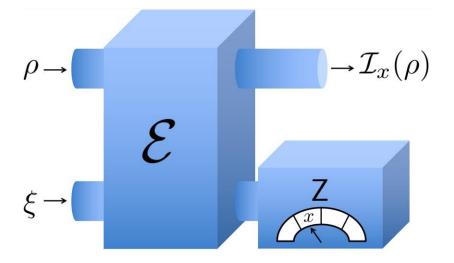
• Under the third law constraint, state preparations $\rho = \Phi(|\Omega\rangle\langle\Omega|)$ have full rank in \mathcal{H}

Quantum Measurements

Measurement schemes, instruments, and POVMs



Measurement schemes, instruments, and POVMs



• $\mathcal{M} := (\mathcal{H}_{\mathcal{A}}, \xi, \mathcal{E}, \mathsf{Z})$ is a measurement scheme for an instrument $\mathcal{I} := \{\mathcal{I}_x : x \in \mathcal{X}\}$ compatible with an observable (POVM) $\mathsf{E} := \{\mathsf{E}_x : x \in \mathcal{X}\}$ acting in $\mathcal{H}_{\mathcal{S}}$

Measurement schemes, instruments, and POVMs



• $\mathcal{M} := (\mathcal{H}_{\mathcal{A}}, \xi, \mathcal{E}, \mathsf{Z})$ is a measurement scheme for an instrument $\mathcal{I} := \{\mathcal{I}_x : x \in \mathcal{X}\}$ compatible with an observable (POVM) $\mathsf{E} := \{\mathsf{E}_x : x \in \mathcal{X}\}$ acting in $\mathcal{H}_{\mathcal{S}}$

$$\mathcal{I}_{x}(\rho) = \operatorname{tr}_{\mathcal{A}}[\mathbb{1}_{\mathcal{S}} \otimes \mathsf{Z}_{x}\mathcal{E}(\rho \otimes \xi)] \,\forall x, \rho$$
$$\operatorname{tr}[\mathcal{I}_{x}(\rho)] = \operatorname{tr}[\mathsf{E}_{x}\rho] \,\forall x, \rho$$

M. Ozawa, J. Math. Phys. 25, 79 (1984)

Definition. A measurement scheme $\mathcal{M} := (\mathcal{H}_{\mathcal{A}}, \xi, \mathcal{E}, \mathsf{Z})$ is constrained by the third law if the following hold:

1. ξ is a full-rank state on $\mathcal{H}_{\mathcal{A}}$

2. \mathcal{E} is a rank non-decreasing channel acting in $\mathcal{H}_{\mathcal{S}} \otimes \mathcal{H}_{\mathcal{A}}$

Definition. A measurement scheme $\mathcal{M} := (\mathcal{H}_{\mathcal{A}}, \xi, \mathcal{E}, \mathsf{Z})$ is constrained by the third law if the following hold:

- 1. ξ is a full-rank state on $\mathcal{H}_{\mathcal{A}}$
- 2. \mathcal{E} is a rank non-decreasing channel acting in $\mathcal{H}_{\mathcal{S}} \otimes \mathcal{H}_{\mathcal{A}}$
- The third law does not limit measurability of any observable; choosing ${\cal E}$ as a unitary swap channel, then ${\sf E}={\sf Z}$

Definition. A measurement scheme $\mathcal{M} := (\mathcal{H}_{\mathcal{A}}, \xi, \mathcal{E}, \mathsf{Z})$ is constrained by the third law if the following hold:

- 1. ξ is a full-rank state on $\mathcal{H}_{\mathcal{A}}$
- 2. \mathcal{E} is a rank non-decreasing channel acting in $\mathcal{H}_{\mathcal{S}} \otimes \mathcal{H}_{\mathcal{A}}$
- The third law does not limit measurability of any observable; choosing ${\cal E}$ as a unitary swap channel, then ${\sf E}={\sf Z}$
- But the third law limits the realisable instruments; as shown by Guryanova *et al.*, the standard von Neumann measurements $\rho \mapsto |\psi_x\rangle \langle \psi_x | \rho | \psi_x \rangle \langle \psi_x |$ are ruled out

Definition. A measurement scheme $\mathcal{M} := (\mathcal{H}_{\mathcal{A}}, \xi, \mathcal{E}, \mathsf{Z})$ is constrained by the third law if the following hold:

- 1. ξ is a full-rank state on $\mathcal{H}_{\mathcal{A}}$
- 2. \mathcal{E} is a rank non-decreasing channel acting in $\mathcal{H}_{\mathcal{S}} \otimes \mathcal{H}_{\mathcal{A}}$
- The third law does not limit measurability of any observable; choosing ${\cal E}$ as a unitary swap channel, then ${\sf E}={\sf Z}$
- But the third law limits the realisable instruments; as shown by Guryanova *et al.*, the standard von Neumann measurements $\rho \mapsto |\psi_x\rangle \langle \psi_x | \rho | \psi_x \rangle \langle \psi_x |$ are ruled out

Y. Guryanova , N. Friis, M. Huber, Quantum 4, 222 (2019)

Measurements constrained by the third law

• The EPR criterion of physical reality reads:

• The EPR criterion of physical reality reads:

"If, without in any way disturbing a system, we can predict with certainty (i.e., with probability equal to unity) the value of a physical quantity, then there exists an element of physical reality corresponding to this physical quantity"

A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935)

• The EPR criterion of physical reality reads:

"If, without in any way disturbing a system, we can predict with certainty (i.e., with probability equal to unity) the value of a physical quantity, then there exists an element of physical reality corresponding to this physical quantity"

A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935)

• The EPR criterion rests on the notion of "ideal" measurement

$$\begin{array}{c} \rho \end{array} \longrightarrow \end{array} \xrightarrow{} \end{array} \xrightarrow{} \rho \\ \downarrow \end{array}$$

• \mathcal{I} is an ideal measurement of E if for all x there exists ρ such that $tr[\mathsf{E}_x \rho] = 1$, and if for every x and ρ the following implication holds:

$$\operatorname{tr}[\mathsf{E}_x \rho] = 1 \implies \mathcal{I}_x(\rho) = \rho$$

• \mathcal{I} is an ideal measurement of E if for all x there exists ρ such that $tr[\mathsf{E}_x \rho] = 1$, and if for every x and ρ the following implication holds:

$$\operatorname{tr}[\mathsf{E}_x \rho] = 1 \implies \mathcal{I}_x(\rho) = \rho$$

• Without any constraints, E admits an ideal measurement if and only if all of its effects have eigenvalue 1

• \mathcal{I} is an ideal measurement of E if for all x there exists ρ such that $tr[\mathsf{E}_x \rho] = 1$, and if for every x and ρ the following implication holds:

$$\operatorname{tr}[\mathsf{E}_x \rho] = 1 \implies \mathcal{I}_x(\rho) = \rho$$

• Without any constraints, E admits an ideal measurement if and only if all of its effects have eigenvalue 1

Theorem. Under the third law constraint, no observable admits an ideal measurement

• \mathcal{I} is an ideal measurement of E if for all x there exists ρ such that $tr[\mathsf{E}_x \rho] = 1$, and if for every x and ρ the following implication holds:

$$\operatorname{tr}[\mathsf{E}_x \rho] = 1 \implies \mathcal{I}_x(\rho) = \rho$$

• Without any constraints, E admits an ideal measurement if and only if all of its effects have eigenvalue 1

Theorem. Under the third law constraint, no observable admits an ideal measurement

$$\operatorname{tr}[\mathsf{E}_x \rho] = 1 \implies \operatorname{rank}(\mathcal{I}_x(\rho)) > \operatorname{rank}(\rho)$$

Approximately ideal measurements

• The Lüders E-compatible instrument has the operations $\mathcal{I}_x^L(\cdot) := \sqrt{\mathsf{E}_x} \cdot \sqrt{\mathsf{E}_x}$

- The Lüders E-compatible instrument has the operations $\mathcal{I}_x^L(\cdot) := \sqrt{\mathsf{E}_x} \cdot \sqrt{\mathsf{E}_x}$
- Lüders instruments are approximately ideal; for any $0 \leq \epsilon < 1$,

$$\operatorname{tr}[\mathsf{E}_x\rho] \ge 1 - \epsilon \implies \frac{1}{2} \|\rho - \mathcal{I}_x^L(\rho)/\operatorname{tr}[\mathsf{E}_x\rho]\|_1 \leqslant \sqrt{\epsilon}$$

P. Busch, Phys. Rev. D 33, 2253 (1986)P. Busch and G. Jaeger, Found. Phys. 40, 1341 (2010)

- The Lüders E-compatible instrument has the operations $\mathcal{I}_x^L(\cdot) := \sqrt{\mathsf{E}_x} \cdot \sqrt{\mathsf{E}_x}$
- Lüders instruments are approximately ideal; for any $0 \leq \epsilon < 1$,

$$\operatorname{tr}[\mathsf{E}_x\rho] \ge 1 - \epsilon \implies \frac{1}{2} \|\rho - \mathcal{I}_x^L(\rho)/\operatorname{tr}[\mathsf{E}_x\rho]\|_1 \leqslant \sqrt{\epsilon}$$

P. Busch, Phys. Rev. D 33, 2253 (1986)P. Busch and G. Jaeger, Found. Phys. 40, 1341 (2010)

Theorem. Under the third law constraint, E admits a Lüders instrument if and only if it none of the effects have eigenvalue 0 or 1

- The Lüders E-compatible instrument has the operations $\mathcal{I}_x^L(\cdot) := \sqrt{\mathsf{E}_x} \cdot \sqrt{\mathsf{E}_x}$
- Lüders instruments are approximately ideal; for any $0 \leq \epsilon < 1$,

$$\operatorname{tr}[\mathsf{E}_x\rho] \ge 1 - \epsilon \implies \frac{1}{2} \|\rho - \mathcal{I}_x^L(\rho)/\operatorname{tr}[\mathsf{E}_x\rho]\|_1 \leqslant \sqrt{\epsilon}$$

P. Busch, Phys. Rev. D 33, 2253 (1986)P. Busch and G. Jaeger, Found. Phys. 40, 1341 (2010)

Theorem. Under the third law constraint, E admits a Lüders instrument if and only if it none of the effects have eigenvalue 0 or 1

• If events are indefinite in all states, then the third law is compatible with an approximate/unsharp variant of the EPR criteron

Repeatable measurements $p \rightarrow \overrightarrow{r} \rightarrow \overrightarrow{r}$ $\overset{*}{x}$

Repeatable measurements $p \rightarrow \overrightarrow{r} \rightarrow \overrightarrow{r}$ $\overset{*}{x}$ $\overset{*}{x}$

• The repeatability principle of von Neumann reads:

Repeatable measurements $p \rightarrow \overrightarrow{x} \rightarrow \overrightarrow{x}$

• The repeatability principle of von Neumann reads:

"If the physical quantity R is measured twice in prompt succession in a system S then we get the same value each time"

J. von Neumann, Mathematical Foundations of Quantum Mechanics: New Edition (2018), p. 218

Repeatable measurements $p \rightarrow \overrightarrow{r} \rightarrow \overrightarrow{r}$ $\overset{*}{x}$ $\overset{*}{x}$

• The repeatability principle of von Neumann reads:

"If the physical quantity R is measured twice in prompt succession in a system S then we get the same value each time"

J. von Neumann, Mathematical Foundations of Quantum Mechanics: New Edition (2018), p. 218

• Repeatability and ideality coincide only for sharp rank-1 observables; in general a measurement may be repeatable but not ideal, or ideal but not repeatable

- ${\mathcal I}$ is a repeatable measurement of ${\sf E}$ if

$$\operatorname{tr}[\mathsf{E}_{y}\mathcal{I}_{x}(\rho)] = \delta_{x,y}\operatorname{tr}[\mathsf{E}_{x}\rho]\,\forall\rho,x,y$$

- ${\mathcal I}$ is a repeatable measurement of ${\sf E}$ if

$$\operatorname{tr}[\mathsf{E}_{y}\mathcal{I}_{x}(\rho)] = \delta_{x,y}\operatorname{tr}[\mathsf{E}_{x}\rho]\,\forall\rho,x,y$$

• Without any constraints, E admits a repeatable measurement if and only if all of its effects have eigenvalue 1

- ${\mathcal I}$ is a repeatable measurement of ${\sf E}$ if

$$\operatorname{tr}[\mathsf{E}_{y}\mathcal{I}_{x}(\rho)] = \delta_{x,y}\operatorname{tr}[\mathsf{E}_{x}\rho]\,\forall\rho,x,y$$

• Without any constraints, E admits a repeatable measurement if and only if all of its effects have eigenvalue 1

Theorem. Under the third law constraint, no observable admits a repeatable measurement

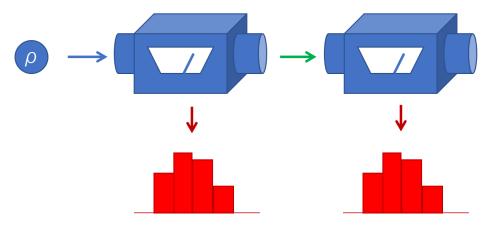
- ${\mathcal I}$ is a repeatable measurement of ${\sf E}$ if

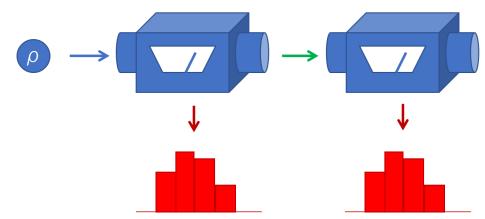
$$\operatorname{tr}[\mathsf{E}_{y}\mathcal{I}_{x}(\rho)] = \delta_{x,y}\operatorname{tr}[\mathsf{E}_{x}\rho]\,\forall\rho,x,y$$

• Without any constraints, E admits a repeatable measurement if and only if all of its effects have eigenvalue 1

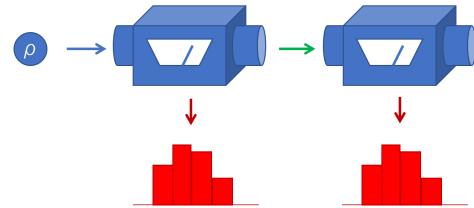
Theorem. Under the third law constraint, no observable admits a repeatable measurement

For every full-rank state ρ , tr[$\mathsf{E}_y \mathcal{I}_x(\rho)$] > 0 $\forall x, y$

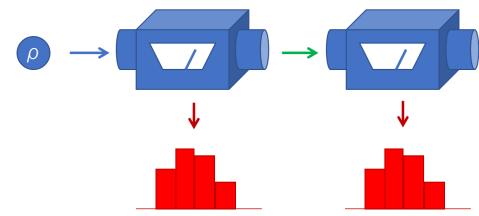




• An E-instrument \mathcal{I} is a measurement of the first kind if $\operatorname{tr}[\mathsf{E}_x\mathcal{I}_{\mathcal{X}}(\rho)] = \operatorname{tr}[\mathsf{E}_x\rho] \forall \rho, x$



- An E-instrument \mathcal{I} is a measurement of the first kind if $\operatorname{tr}[\mathsf{E}_x\mathcal{I}_{\mathcal{X}}(\rho)] = \operatorname{tr}[\mathsf{E}_x\rho] \forall \rho, x$
- Repeatability implies first-kindness, but the converse implication only holds if the observable is sharp P. J. Lahti, P. Busch, and P. Mittelstaedt, J. Math. Phys. 32, 2770 (1991)



- An E-instrument \mathcal{I} is a measurement of the first kind if $\operatorname{tr}[\mathsf{E}_x\mathcal{I}_{\mathcal{X}}(\rho)] = \operatorname{tr}[\mathsf{E}_x\rho] \forall \rho, x$
- Repeatability implies first-kindness, but the converse implication only holds if the observable is sharp P. J. Lahti, P. Busch, and P. Mittelstaedt, J. Math. Phys. 32, 2770 (1991)

Theorem. Under the third law constraint, E admits a measurement of the first kind only if none of its effects have eigenvalue 0 or 1, and if it additionally holds that all the effects mutually commute

• We provided a general formulation of the third law for channels with arbitrary input and output spaces

- We provided a general formulation of the third law for channels with arbitrary input and output spaces
- A measurement constrained by the third law cannot be ideal or repeatable

- We provided a general formulation of the third law for channels with arbitrary input and output spaces
- A measurement constrained by the third law cannot be ideal or repeatable
- But the third law does allow for weakened forms of ideality and repeatability

- We provided a general formulation of the third law for channels with arbitrary input and output spaces
- A measurement constrained by the third law cannot be ideal or repeatable
- But the third law does allow for weakened forms of ideality and repeatability
- Approximately ideal measurements, as well as First-kind measurements, are allowed for "completely unsharp" observables which are indefinite in all states