Hayato Arai $^{1,(2)}$ and Masahito Hayashi 3,4,2

 $\frac{\rm RIKEN^1, Nagoya\ University^2,}{\rm The\ Chinese\ University\ of\ Hong\ Kong,\ Shenzhen^3,\ International\ Quantum\ Academy^4}$

arXiv:2307.11271 Quantum TUT Workshop 2024

Self-Introduction and Abstract

- Hayato Arai
 - Post-Doc at Riken, Group of Bartosz Regula
 - (Now) Mainly working on Non-IID Hypothesis Testing
 - Working on Foundation (in Ph.D Thesis)

Today's Talk

- Field : Foundation of Quantum Theory
- Aim : Derivation of Model of Quantum Theory
- Method : State Discrimination in General Probabilistic Theories
- Results (details in later)
 - 1 A Tight Bound for 2-State Discrimination in General Models
 - 2 Equivalent Condition for Violation of Quantum Bound
 - **3** Derivation of Quantum Theory via State Discrimination!

- General Probabilistic Theories (GPTs) is a modern general structure focusing on probabilistic structures obtained by states and measurements
- The requirement of GPTs is weak \rightarrow there are many available models in GPTs except for quantum and classical theory.
- The aim of GPTs is to find a "good" postulate to single out QT
- Preceding studies are imperfect because some cannot characterize quantum theory uniquely, others are not operationally meaningful.

- General Probabilistic Theories (GPTs) is a modern general structure focusing on probabilistic structures obtained by states and measurements
- The requirement of GPTs is weak \rightarrow there are many available models in GPTs except for quantum and classical theory.
- The aim of GPTs is to find a "good" postulate to single out QT
- Preceding studies are imperfect because some cannot characterize quantum theory uniquely, others are not operationally meaningful.

- General Probabilistic Theories (GPTs) is a modern general structure focusing on probabilistic structures obtained by states and measurements
- The requirement of GPTs is weak \rightarrow there are many available models in GPTs except for quantum and classical theory.
- The aim of GPTs is to find a "good" postulate to single out QT
- Preceding studies are imperfect because some cannot characterize quantum theory uniquely, others are not operationally meaningful.

- General Probabilistic Theories (GPTs) is a modern general structure focusing on probabilistic structures obtained by states and measurements
- The requirement of GPTs is weak \rightarrow there are many available models in GPTs except for quantum and classical theory.
- The aim of GPTs is to find a "good" postulate to single out QT
- Preceding studies are imperfect because some cannot characterize quantum theory uniquely, others are not operationally meaningful.

Postulates	Operational Meaning	Single Out QT
No-Cloning [Barnum2006]	No-Go	×
Tsirelson's bound [Barnum2010]	Bound Performance	×
Purification $+\alpha$ [Chiribella2011]	?	\checkmark
Bit-symmetry $+\alpha$ [Barnum2019]	?	\checkmark
?	\checkmark	✓

- General Probabilistic Theories (GPTs) is a modern general structure focusing on probabilistic structures obtained by states and measurements
- The requirement of GPTs is weak \rightarrow there are many available models in GPTs except for quantum and classical theory.
- The aim of GPTs is to find a "good" postulate to single out QT
- Preceding studies are imperfect because some cannot characterize quantum theory uniquely, others are not operationally meaningful.

Postulates	Operational Meaning	Single Out QT
No-Cloning [Barnum2006]	No-Go	×
Tsirelson's bound [Barnum2010]	Bound Performance	×
Purification $+\alpha$ [Chiribella2011]	?	\checkmark
Bit-symmetry $+\alpha$ [Barnum2019]	?	\checkmark
2-State Discrimination [Today]	Bound Performance	✓

Preliminary

- positive (proper) cone $\mathcal{C} \subset \mathcal{V}$
- $\mathcal{V}: \text{ Finite-Dimensional Real-Vector Space} \\ (\text{with Inner Product } \langle \ , \ \rangle)$
 - closed, convex, has non-empty interior
 - $\blacktriangleright \ \forall x \in \mathcal{C}, \ \forall r \geq 0, \ rx \in \mathcal{C}$
 - $\blacktriangleright \ \mathcal{C} \cap (-\mathcal{C}) = \{0\}$
- dual cone $\mathcal{C}^* := \{ f \in \mathcal{V}^* \mid f(x) \ge 0 \ \forall x \in \mathcal{C} \}$
- A Typical Example

$$\mathcal{L}^+_{\mathrm{H}}(\mathcal{H}) \quad (\mathcal{L}^+_{\mathrm{H}}(\mathcal{H})^* := \{f(x) := \operatorname{Tr} xy \mid y \in \mathcal{L}^+_{\mathrm{H}}(\mathcal{H})\} \\ \simeq \mathcal{L}^+_{\mathrm{H}}(\mathcal{H}))$$

Assumption and Notation \mathcal{H} : finite-dim. Hilbert sp. $\mathcal{L}_{H}(\mathcal{H})$: set of Hermitian matrices on \mathcal{H} $\mathcal{L}_{H}^{+}(\mathcal{H})$: set of positive semi-definite matrices on \mathcal{H}

• In this study, we mainly consider the case $\mathcal{V} = \mathcal{L}_H(\mathcal{H})$ with the Frobenius inner product $\langle X, Y \rangle = \operatorname{Tr} XY$

Definition of a model GPTs

A model of GPTs is defined by $\mathcal{C} \subset \mathcal{V}$ with an normalization effect $u \in \mathcal{V}^*$

- State ρ (Generalization of density matrix)
 - $\rho \in \mathcal{C}$ $u(\rho) = 1$

• Measurement $\{M_i\}_i$ (Generalization of POVM)

- $M_i \in \mathcal{C}^* \\ \Leftrightarrow M_i(\rho) \ge 0 \ (\forall \rho \in \mathcal{C}) \\ \blacktriangleright \sum_i M_i = u$
- When a state ρ is measured by $\{M_i\}$

 \rightarrow The outcome *i* is obtained w.p. $p_i = M_i(\rho)$

ightarrow The model of GPTs is determine by ${\cal C}$

Definition of a model GPTs

(Roughly) Definition of a model GPTs

Quantum Theory (QT) on Hilbert Space ${\mathcal H}$

• State ρ (density matrix)

• $\rho \in \mathcal{L}_{\mathrm{H}}^{+}(\mathcal{H})$ • $\operatorname{Tr} \rho = 1$

- Measurement $\{M_i\}_i$ (POVM)
 - $M_i \in \mathcal{L}^+_{\mathrm{H}}(\mathcal{H})$
 - $\Rightarrow \operatorname{Tr} \rho M_i \ge 0 \ (\forall \rho \in \mathcal{L}^+_{\mathrm{H}}(\mathcal{H}))$ $\blacktriangleright \sum_i M_i = I$
- When a state ρ is measured by $\{M_i\}$
 - \rightarrow The outcome i is obtained w.p. $p_i = \operatorname{Tr} \rho M_i$
- ightarrow The model of QT is determine by $\mathcal{L}^+_{
 m H}(\mathcal{H})$

Correspondence $egin{array}{ccc} \mathsf{GPT} & \mathsf{QT} \ \mathcal{C} & \leftrightarrow & \mathcal{L}^+_{\mathrm{H}}(\mathcal{H}) \end{array}$

Definition of a model GPTs

A Q-like model of GPTs is defined by $\mathcal{C} \subset \mathcal{L}_{\mathrm{H}}(\mathcal{H})$

- State ρ
 - $\rho \in \mathcal{C}$ • $\operatorname{Tr} \rho = 1$
- Measurement $\{M_i\}_i$
 - $M_i \in \mathcal{C}^* \ (\subset \mathcal{L}_{\mathrm{H}}(\mathcal{H})) \\ \Leftrightarrow \operatorname{Tr} \rho M_i \ge 0 \ (\forall \rho \in \mathcal{C}) \\ \blacktriangleright \sum_i M_i = I$
- Probability to get an outcome \boldsymbol{i}
 - The outcome i is obtained w.p. $p_i = \operatorname{Tr} \rho M_i$
- \rightarrow A Q-like is determined by C

Correspondence GPT QT $\mathcal{C} \quad \leftrightarrow \quad \mathcal{L}^+_{\mathrm{u}}(\mathcal{H})$

Definition of a model GPTs

An example of Q-like models

defined by $\mathcal{L}^+_{\mathrm{H}}(\mathcal{H}_A) \otimes \mathcal{L}^+_{\mathrm{H}}(\mathcal{H}_B) \subset \mathcal{L}_{\mathrm{H}}(\mathcal{H}_A \otimes \mathcal{H}_B)$

- State ρ
 - $\rho \in \mathcal{L}_{\mathrm{H}}^{+}(\mathcal{H}_{A}) \otimes \mathcal{L}_{\mathrm{H}}^{+}(\mathcal{H}_{B})$ $Tr \rho = 1$
- Measurement $\{M_i\}_i$
 - $M_i \in \left(\mathcal{L}^+_{\mathrm{H}}(\mathcal{H}_A) \otimes \mathcal{L}^+_{\mathrm{H}}(\mathcal{H}_B)\right)^*$
 - $\Leftrightarrow \operatorname{Tr} \rho M_i \ge 0 \ (\forall \rho \in \mathcal{L}^+_{\mathrm{H}}(\mathcal{H}_A) \otimes \mathcal{L}^+_{\mathrm{H}}(\mathcal{H}_B))$ $\blacktriangleright \sum_i M_i = I$
 - ex: Partial Transposed Entanlement (Beyond POVMs)
- Probability to get an outcome i
 - The outcome i is obtained w.p. $p_i = \operatorname{Tr} \rho M_i$
- ightarrow A Q-like is determined by $\mathcal{L}^+_{\mathrm{H}}(\mathcal{H}_A)\otimes\mathcal{L}^+_{\mathrm{H}}(\mathcal{H}_B)$

$$\begin{pmatrix} \mathsf{Correspondence} & & \\ \mathsf{GPT} & \mathsf{QT} & \\ \mathcal{C} & \leftrightarrow & \mathcal{L}^+_\mathrm{H}(\mathcal{H}) \end{pmatrix}$$

Isomorphism in models of GPTs

An isomorphism f from a model ${\pmb G}=({\mathcal C},u)$ to $\tilde{{\pmb G}}=(\tilde{{\mathcal C}},\tilde{u})$ is defined as

- f is a linear isomorphism from \mathcal{V} to $\tilde{\mathcal{V}}$ $(\dim(\mathcal{V}) = \dim(\tilde{\mathcal{V}}))$
- $\tilde{\mathcal{C}} = f(\mathcal{C})$
- $\tilde{u} \circ f = cu$ for a constant c > 0
- $\tilde{\rho} = \frac{1}{c}f(\rho)$
- $\tilde{M}_i = cM_i \circ f^{-1}$
- $\rightarrow \tilde{M}_i(\tilde{\rho}) = cM_i \circ f^{-1}\left(\frac{1}{c}f(\rho)\right) = M_i(\rho)$
 - Therefore, the two model G and \tilde{G} are equivalent from the viewpoint of probabilistic structures obtained from states and measurements
 - Any model with d^2 -dimensional vector space can be isomophic to a Q-like model

Isomorphism in models of GPTs

An isomorphism f from a model ${\pmb G}=({\mathcal C},u)$ to $\tilde{{\pmb G}}=(\tilde{{\mathcal C}},\tilde{u})$ is defined as

- f is a linear isomorphism from \mathcal{V} to $\tilde{\mathcal{V}}$ $(\dim(\mathcal{V}) = \dim(\tilde{\mathcal{V}}))$
- $\tilde{\mathcal{C}} = f(\mathcal{C})$
- $\tilde{u} \circ f = cu$ for a constant c > 0
- $\tilde{\rho} = \frac{1}{c}f(\rho)$
- $\tilde{M}_i = cM_i \circ f^{-1}$
- $\rightarrow \tilde{M}_i(\tilde{\rho}) = cM_i \circ f^{-1}\left(\frac{1}{c}f(\rho)\right) = M_i(\rho)$
 - Therefore, the two model G and \tilde{G} are equivalent from the viewpoint of probabilistic structures obtained from states and measurements
 - Any model with d^2 -dimensional vector space can be isomophic to a Q-like model

Isomorphism in models of GPTs

An isomorphism f from a model ${\pmb G}=({\mathcal C},u)$ to $\tilde{{\pmb G}}=(\tilde{{\mathcal C}},\tilde{u})$ is defined as

- f is a linear isomorphism from \mathcal{V} to $\tilde{\mathcal{V}}$ $(\dim(\mathcal{V}) = \dim(\tilde{\mathcal{V}}))$
- $\tilde{\mathcal{C}} = f(\mathcal{C})$
- $\tilde{u} \circ f = cu$ for a constant c > 0
- $\tilde{\rho} = \frac{1}{c}f(\rho)$
- $\tilde{M}_i = cM_i \circ f^{-1}$
- $\rightarrow \tilde{M}_i(\tilde{\rho}) = cM_i \circ f^{-1}\left(\frac{1}{c}f(\rho)\right) = M_i(\rho)$
 - Therefore, the two model G and \tilde{G} are equivalent from the viewpoint of probabilistic structures obtained from states and measurements
 - Any model with d^2 -dimensional vector space can be isomophic to a Q-like model

- Given an unknown state ρ prepared as ρ_0, ρ_1 with probability p, 1-p, to identify the state ρ by one-shot measurement $M = \{M_0, M_1\}$ with high probability
- Total error probability is given as

$$\operatorname{Err}(\rho_0; \rho_1; p; \boldsymbol{M}) := p \operatorname{Tr} \rho_0 M_1 + (1-p) \operatorname{Tr} \rho_1 M_0$$

• In QT, the error probability is bounded as Quantum Bound (Helstrom Bound) $\operatorname{Err}(\rho_0;\rho_1;p;\boldsymbol{M}) \geq \frac{1}{2} - \frac{1}{2} \|p\rho_0 - (1-p)\rho_1\|_1$

- Given an unknown state ρ prepared as ρ_0, ρ_1 with probability p, 1-p, to identify the state ρ by one-shot measurement $M = \{M_0, M_1\}$ with high probability
- Total error probability is given as

$$\operatorname{Err}(\rho_0; \rho_1; p; \boldsymbol{M}) := p \operatorname{Tr} \rho_0 M_1 + (1-p) \operatorname{Tr} \rho_1 M_0$$

• In QT, the error probability is bounded as Quantum Bound (Helstrom Bound) $\operatorname{Err}(\rho_0;\rho_1;p;M) \geq \frac{1}{2} - \frac{1}{2} \|p\rho_0 - (1-p)\rho_1\|_1$

- Given an unknown state ρ prepared as ρ_0, ρ_1 with probability p, 1-p, to identify the state ρ by one-shot measurement $M = \{M_0, M_1\}$ with high probability
- Total error probability is given as

$$\operatorname{Err}(\rho_0; \rho_1; p; \boldsymbol{M}) := p \operatorname{Tr} \rho_0 M_1 + (1-p) \operatorname{Tr} \rho_1 M_0$$

• In QT, the error probability is bounded as Quantum Bound (Helstrom Bound) $\operatorname{Err}(\rho_0;\rho_1;p;\boldsymbol{M}) \geq \frac{1}{2} - \frac{1}{2} \|p\rho_0 - (1-p)\rho_1\|_1$

- Given an unknown state ρ prepared as ρ_0, ρ_1 with probability p, 1-p, to identify the state ρ by one-shot measurement $M = \{M_0, M_1\}$ with high probability
- Total error probability is given as

$$\operatorname{Err}(\rho_0; \rho_1; p; \boldsymbol{M}) := p \operatorname{Tr} \rho_0 M_1 + (1-p) \operatorname{Tr} \rho_1 M_0$$

- In QT, the error probability is bounded as Quantum Bound (Helstrom Bound) $\operatorname{Err}(\rho_0;\rho_1;p;\boldsymbol{M}) \geq \frac{1}{2} - \frac{1}{2} \|p\rho_0 - (1-p)\rho_1\|_1$
- In the case $C = \mathcal{L}_{H}^{+}(\mathcal{H}_{A}) \otimes \mathcal{L}_{H}^{+}(\mathcal{H}_{B})$, there exists non-orthogonal perfectly distinguishable states ρ_{0}, ρ_{1}
- $\rightarrow \operatorname{Err}(\rho_0; \rho_1; p; \boldsymbol{M}) = 0$, and $\operatorname{Tr} \rho_0 \rho_1 > 0$ ($\Rightarrow \|\rho_0 \rho_1\| < 2$)
- ightarrow Violates Quantum Bound (p=1/2)

Example

$$M_0 := \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \Gamma \left(\begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} \right), \quad M_1 := \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- The measurement $\{M_0,M_1\}$ can perfectly discriminate non-orthogonal separable states ρ_0,ρ_1 defined as

- They satisfies $\operatorname{Tr} \rho_i M_j = \delta_{ij}$
- However, $\operatorname{Tr} \rho_0 \rho_1 > 0$

• For a two-outcome measurement ${oldsymbol M}=\{M_0,M_1\}$, we define

 $r(\mathbf{M}) := \lambda_{\max}(M_i) - \lambda_{\min}(M_i), \quad r'(\mathbf{M}, i) := \lambda_{\max}(M_i) + \lambda_{\min}(M_i).$

• Because $M_0 + M_1 = I$, the value $r(\boldsymbol{M})$ is independent of i

$$\therefore \lambda_{\max}(M_1) = 1 - \lambda_{\min}(M_0)$$
, $\lambda_{\min}(M_1) = 1 - \lambda_{\max}(M_0)$

Theorem 1 (General Lower Bound)

Consider a (Q-like) model. Any pair of two states ρ_0, ρ_1 and any measurement $M = \{M_0, M_1\}$ in the model satisfy

$$\operatorname{Err}(\rho_0; \rho_1; p; \boldsymbol{M}) \ge \frac{1}{2} - \frac{1}{2} \|p\rho_0 - (1-p)\rho_1\|_1 r(\boldsymbol{M}) - \frac{1}{2}(2p-1)\left(r'(\boldsymbol{M}, 0) - 1\right).$$
(1)

- M is a POVM $\Rightarrow r(M) \leq 1$, M is optimal in QT $\Rightarrow r'(M,i) = 1$
- \rightarrow (1) reproduce Quantum Bound.
 - There exist ρ_i and p satisfies the equality of (1) (Tight!)

• For a two-outcome measurement ${oldsymbol M}=\{M_0,M_1\}$, we define

 $r(\mathbf{M}) := \lambda_{\max}(M_i) - \lambda_{\min}(M_i), \quad r'(\mathbf{M}, i) := \lambda_{\max}(M_i) + \lambda_{\min}(M_i).$

• Because $M_0 + M_1 = I$, the value $r(\boldsymbol{M})$ is independent of i

$$\therefore \lambda_{\max}(M_1) = 1 - \lambda_{\min}(M_0)$$
, $\lambda_{\min}(M_1) = 1 - \lambda_{\max}(M_0)$

Theorem 1 (General Lower Bound)

Consider a (Q-like) model. Any pair of two states ρ_0, ρ_1 and any measurement $M = \{M_0, M_1\}$ in the model satisfy

$$\operatorname{Err}(\rho_0;\rho_1;p;\boldsymbol{M}) \ge \frac{1}{2} - \frac{1}{2} \|p\rho_0 - (1-p)\rho_1\|_1 r(\boldsymbol{M}) - \frac{1}{2}(2p-1)\left(r'(\boldsymbol{M},0) - 1\right).$$
(1)

- M is a POVM $\Rightarrow r(M) \leq 1$, M is optimal in QT $\Rightarrow r'(M,i) = 1$
- ightarrow (1) reproduce Quantum Bound.
 - There exist ρ_i and p satisfies the equality of (1) (Tight!)

• For a two-outcome measurement ${oldsymbol M}=\{M_0,M_1\}$, we define

 $r(\mathbf{M}) := \lambda_{\max}(M_i) - \lambda_{\min}(M_i), \quad r'(\mathbf{M}, i) := \lambda_{\max}(M_i) + \lambda_{\min}(M_i).$

• Because $M_0 + M_1 = I$, the value $r(\boldsymbol{M})$ is independent of i

$$\therefore \lambda_{\max}(M_1) = 1 - \lambda_{\min}(M_0), \ \lambda_{\min}(M_1) = 1 - \lambda_{\max}(M_0)$$

Theorem 1 (General Lower Bound)

Consider a (Q-like) model. Any pair of two states ρ_0, ρ_1 and any measurement $M = \{M_0, M_1\}$ in the model satisfy

$$\operatorname{Err}(\rho_0;\rho_1;p;\boldsymbol{M}) \ge \frac{1}{2} - \frac{1}{2} \|p\rho_0 - (1-p)\rho_1\|_1 r(\boldsymbol{M}) - \frac{1}{2}(2p-1)\left(r'(\boldsymbol{M},0) - 1\right).$$
(1)

- ${m M}$ is a POVM $\Rightarrow r({m M}) \leq 1$, ${m M}$ is optimal in QT $\Rightarrow r'({m M},i) = 1$
- \rightarrow (1) reproduce Quantum Bound.
 - There exist ρ_i and p satisfies the equality of (1) (Tight!)

• For a two-outcome measurement ${oldsymbol M}=\{M_0,M_1\}$, we define

 $r(\mathbf{M}) := \lambda_{\max}(M_i) - \lambda_{\min}(M_i), \quad r'(\mathbf{M}, i) := \lambda_{\max}(M_i) + \lambda_{\min}(M_i).$

• Because $M_0 + M_1 = I$, the value $r(\boldsymbol{M})$ is independent of i

$$\therefore \lambda_{\max}(M_1) = 1 - \lambda_{\min}(M_0), \ \lambda_{\min}(M_1) = 1 - \lambda_{\max}(M_0)$$

Theorem 1 (General Lower Bound)

Consider a (Q-like) model. Any pair of two states ρ_0, ρ_1 and any measurement $M = \{M_0, M_1\}$ in the model satisfy

$$\operatorname{Err}(\rho_0;\rho_1;p;\boldsymbol{M}) \ge \frac{1}{2} - \frac{1}{2} \|p\rho_0 - (1-p)\rho_1\|_1 r(\boldsymbol{M}) - \frac{1}{2}(2p-1)\left(r'(\boldsymbol{M},0) - 1\right).$$
(1)

- ${m M}$ is a POVM $\Rightarrow r({m M}) \leq 1$, ${m M}$ is optimal in QT $\Rightarrow r'({m M},i) = 1$
- \rightarrow (1) reproduce Quantum Bound.
 - There exist ρ_i and p satisfies the equality of (1) (Tight!)

• For a two-outcome measurement ${oldsymbol M}=\{M_0,M_1\}$, we define

 $r(\mathbf{M}) := \lambda_{\max}(M_i) - \lambda_{\min}(M_i), \quad r'(\mathbf{M}, i) := \lambda_{\max}(M_i) + \lambda_{\min}(M_i).$

• Because $M_0 + M_1 = I$, the value $r(\boldsymbol{M})$ is independent with i

 $\therefore \lambda_{\max}(M_1) = 1 - \lambda_{\min}(M_0), \ \lambda_{\min}(M_1) = 1 - \lambda_{\max}(M_0)$

Theorem 1 (General Lower Bound)

Consider a (Q-like) model. Any pair of two states ρ_0, ρ_1 and any measurement $M = \{M_0, M_1\}$ in the model satisfy

$$\operatorname{Err}(\rho_0; \rho_1; p; \boldsymbol{M}) \ge \frac{1}{2} - \frac{1}{2} \|p\rho_0 - (1-p)\rho_1\|_1 r(\boldsymbol{M}) - \frac{1}{2}(2p-1)\left(r'(\boldsymbol{M}, 0) - 1\right).$$
(2)

- In the case p = 1/2, the tight bound is simply given by $r(\boldsymbol{M})$
- By applying this, an equivalnt condition for violation of Quantum Bound

Equivalent Condition for Violation of Quantum Bound

Theorem 2 (Equivalent Condition for Violation of Quantum Bound)

Consider a (Q-like) model. Given a measurement $M = \{M_0, M_1\}$ in the model, the following two conditions are equivalent:

1 There exist two states ρ_0 and ρ_1 in the model such that

$$\operatorname{Err}(\rho_0; \rho_1; p = \frac{1}{2}; \boldsymbol{M}) < \frac{1}{2} - \frac{1}{2} \| \frac{1}{2} \rho_0 - \frac{1}{2} \rho_1 \|_1.$$
(3)

2 r(M) > 1.

- If there exists a measurement M with r(M) > 1, the model violates Quantum Bound
- If a beyond-POVM measurements M satisfies $r(M) \leq 1$, then the measurement does not violate Quantum Bound for any states
- Q. Does this uniquely characterize QT? \rightarrow Yes!

Equivalent Condition for Violation of Quantum Bound

Theorem 2 (Equivalent Condition for Violation of Quantum Bound)

Consider a (Q-like) model. Given a measurement $M = \{M_0, M_1\}$ in the model, the following two conditions are equivalent:

1 There exist two states ρ_0 and ρ_1 in the model such that

$$\operatorname{Err}(\rho_0; \rho_1; p = \frac{1}{2}; \boldsymbol{M}) < \frac{1}{2} - \frac{1}{2} \| \frac{1}{2} \rho_0 - \frac{1}{2} \rho_1 \|_1.$$
(3)

2 r(M) > 1.

- If there exists a measurement M with r(M) > 1, the model violates Quantum Bound
- If a beyond-POVM measurements M satisfies $r(M) \leq 1$, then the measurement does not violate Quantum Bound for any states
- Q. Does this uniquely characterize QT? \rightarrow Yes!

Equivalent Condition for Violation of Quantum Bound

Theorem 2 (Equivalent Condition for Violation of Quantum Bound)

Consider a (Q-like) model. Given a measurement $M = \{M_0, M_1\}$ in the model, the following two conditions are equivalent:

1 There exist two states ρ_0 and ρ_1 in the model such that

$$\operatorname{Err}(\rho_0; \rho_1; p = \frac{1}{2}; \boldsymbol{M}) < \frac{1}{2} - \frac{1}{2} \| \frac{1}{2} \rho_0 - \frac{1}{2} \rho_1 \|_1.$$
(3)

2 r(M) > 1.

- If there exists a measurement M with r(M) > 1, the model violates Quantum Bound
- If a beyond-POVM measurements M satisfies $r(M) \leq 1$, then the measurement does not violate Quantum Bound for any states
- Q. Does this uniquely characterize QT? \rightarrow Yes!

Theorem 3 (Derivation of QT via state discrimination)

Consider a (general) model G. The following conditions are equivalent:

 $\bigcirc G = QT$

② There exists an isometric map G to (Q-like) model $ilde{G}$ such that

- A. Any state in $ilde{G}$ is a density matrix (quantum state)
- B. Any state $ho_0,
 ho_1, \, 0 , and any measurement <math>oldsymbol{M}$ in $ilde{oldsymbol{G}}$ satisfies Quantum Bound
- Condition 2

 $\Leftrightarrow \mathsf{embedding\ state\ space\ into\ quantum\ state\ space\ with\ satisfying\ Quantum\ Bound}$

- No model satisfies Quantum Bound but violates other properties of quantum theory
- State discrimination is dominant task over beyond-quantum performances for all tasks

Theorem 3 (Derivation of QT via state discrimination)

Consider a (general) model G. The following conditions are equivalent:

 $\bigcirc G = QT$

② There exists an isometric map G to (Q-like) model $ilde{G}$ such that

- A. Any state in $ilde{G}$ is a density matrix (quantum state)
- B. Any state $ho_0,
 ho_1, \, 0 , and any measurement <math>oldsymbol{M}$ in $ilde{oldsymbol{G}}$ satisfies Quantum Bound
- Condition 2

 $\Leftrightarrow \mathsf{embedding\ state\ space\ into\ quantum\ state\ space\ with\ satisfying\ Quantum\ Bound}$

- No model satisfies Quantum Bound but violates other properties of quantum theory
- State discrimination is dominant task over beyond-quantum performances for all tasks

Theorem 3 (Derivation of QT via state discrimination)

Consider a (general) model G. The following conditions are equivalent:

 $\bigcirc G = QT$

② There exists an isometric map G to (Q-like) model $ilde{G}$ such that

- A. Any state in $ilde{G}$ is a density matrix (quantum state)
- B. Any state $ho_0,
 ho_1, \, 0 , and any measurement <math>oldsymbol{M}$ in $ilde{oldsymbol{G}}$ satisfies Quantum Bound
- Condition 2

 \Leftrightarrow embedding state space into quantum state space with satisfying Quantum Bound

- No model satisfies Quantum Bound but violates other properties of quantum theory
- State discrimination is dominant task over beyond-quantum performances for all tasks

Theorem 3 (Derivation of QT via state discrimination)

Consider a (general) model G. The following conditions are equivalent:

 $\bigcirc G = QT$

 ${f 2}$ There exists an isometric map G to (Q-like) model $ilde{G}$ such that

A. Any state in $ilde{G}$ is a density matrix (quantum state)

B. Any state $ho_0,
ho_1, \, 0 , and any measurement <math>oldsymbol{M}$ in $ilde{oldsymbol{G}}$ satisfies Quantum Bound

Theorem 3 (Derivation of QT via state discrimination)

- Consider a (general) model G. The following conditions are e **1** G = QT
 - 2 There exists an isometric map G to (Q-like) model \tilde{G} su A. Any state in \tilde{G} is a density matrix (quantum state) B. Any state $\rho_0, \rho_1, 0 , and any measurement <math>M$ in

 $\mathcal{L}_{\mathrm{H}}(\mathcal{H})$

 $\mathcal{L}^+_{\mathrm{H}}(\mathcal{H}$

satisfying Quantum Bound

n

state space

Condition G V
G No model
State disci

- REMARK (for experts)

- isometric map exists
 ⇔ background dimensions are the same
- if background dimension is not square number, both conditions 1 and 2 are false
- if background dimension is a square number, both conditions 1 and 2 are true

vith satisfying Quantum Bound properties of quantum theory antum performances for all tasks

Theorem 3 (Derivation of QT via state discrimination)

Consider a (general) model G. The following conditions are equivalent:

 $\bigcirc G = QT$

② There exists an isometric map G to (Q-like) model $ilde{G}$ such that

- A. Any state in $ilde{G}$ is a density matrix (quantum state)
- B. Any state $ho_0,
 ho_1, \, 0 , and any measurement <math>oldsymbol{M}$ in $ilde{oldsymbol{G}}$ satisfies Quantum Bound
- Condition 2

 \Leftrightarrow embedding state space into quantum state space with satisfying Quantum Bound

- No model satisfies Quantum Bound but violates other properties of quantum theory
- State discrimination is dominant task over beyond-quantum performances for all tasks

Theorem 3 (Derivation of QT via state discrimination)

Consider a (general) model G. The following conditions are equivalent:

 $\bigcirc G = QT$

- 2 There exists an isometric map G to (Q-like) model $ilde{G}$ such that
 - A. Any state in $ilde{G}$ is a density matrix (quantum state)
 - B. Any state $ho_0,
 ho_1, \, 0 , and any measurement <math>oldsymbol{M}$ in $ilde{oldsymbol{G}}$ satisfies Quantum Bound
- Due to the condition $\tilde{\mathcal{C}} \subsetneq \mathcal{L}^+_H(\mathcal{H})$, there exists a measurement beyond POVMs
- Even if a measurement is beyond POVMs, it is not trivial that there exists a measurement M with r(M) > 1
- Theorem 3 is non-trivial

Why Classical Theory Violates Condition 2?

- Classical Theory Violates Condition 2
 - 2. There exists an isometric map G to (Q-like) model $ilde{G}$ such that
 - A. Any state in $ilde{G}$ is a density matrix (quantum state)
 - B. Any state $ho_0,
 ho_1,\,0< p<1$, and any measurement $oldsymbol{M}$ in $ilde{oldsymbol{G}}$ satisfies Quantum Bound
- For existence of isomorphism to a Q-like model, the dimension of classical theory is $d^2\,$
- $\rightarrow\,$ There exists $d^2\text{-number}$ of perfectly distinguishable classical states
- ightarrow They are embeded into density matrices
- ightarrow They must be non-orthogonal
- $\rightarrow\,$ A pair of non-orthogonal perfectly distinguishable states violates Quantum Bound in p=1/2

$$\operatorname{Err}(\rho_0; \rho_1; p = \frac{1}{2}; \mathbf{M}) \geq \frac{1}{2} - \frac{1}{2} \|\frac{1}{2}\rho_0 - \frac{1}{2}\rho_1\|_1.$$
(4)

Why Classical Theory Violates Condition 2?

- Classical Theory Violates Condition 2
 - 2. There exists an isometric map G to (Q-like) model $ilde{G}$ such that
 - A. Any state in $ilde{G}$ is a density matrix (quantum state)
 - B. Any state $ho_0,
 ho_1,\,0< p<1$, and any measurement $oldsymbol{M}$ in $ilde{oldsymbol{G}}$ satisfies Quantum Bound
- For existence of isomorphism to a Q-like model, the dimension of classical theory is $d^2\,$
- ightarrow There exists d^2 -number of perfectly distinguishable classical states
- ightarrow They are embeded into density matrices
- ightarrow They must be non-orthogonal
- $\rightarrow\,$ A pair of non-orthogonal perfectly distinguishable states violates Quantum Bound in p=1/2

$$\operatorname{Err}(\rho_0; \rho_1; p = \frac{1}{2}; \boldsymbol{M}) \geq \frac{1}{2} - \frac{1}{2} \|\frac{1}{2}\rho_0 - \frac{1}{2}\rho_1\|_1.$$
(4)

Summary and Take-Home Message

- There are many models in GPTs except for quantum and classical theory
- There was no operational meaningful postulate to single out QT
- We show that **QT** is characterized by Quantum Bound of error probability in 2-state discrimination
- No model satisfies Quantum Bound but violates other properties of quantum theory
- New postulate to derive QT through performances for information tasks!
- Performance for state discrimination characterize the performances for all other tasks!

Open Problems

- **1** Extension to the hypothesis testing and *n*-shot asymptotic setting
 - Instead of the sum of errors, can we deal with each types of errors ${\rm Tr}\,
 ho_0 M_1$ and ${\rm Tr}\,
 ho_1 M_0$
 - What is the general asymptotic rate?
- 2 Relaxation of the condition about the existence of isomophism
 - ▶ In this work, the condition of isomophism to Q-like model $(\dim(\mathcal{V}) = d^2)$ is necessary to deal with trace norm
 - ▶ We need more general measure of the performance for state discrimination

Open Problems

1 Extension to the hypothesis testing and *n*-shot asymptotic setting

- Instead of the sum of errors, can we deal with each types of errors $Tr \rho_0 M_1$ and $Tr \rho_1 M_0$
- What is the general asymptotic rate?
- 2 Relaxation of the condition about the existence of isomophism
 - ► In this work, the condition of isomophism to Q-like model (dim(V) = d²) is necessary to deal with trace norm
 - ▶ We need more general measure of the performance for state discrimination