Derivation of Standard Quantum Theory via State Discrimination

Hayato Arai ${ }^{1,(2)}$ and Masahito Hayashi ${ }^{3,4,2}$

RIKEN ${ }^{1}$, Nagoya University ${ }^{2}$,
The Chinese University of Hong Kong, Shenzhen ${ }^{3}$, International Quantum Academy ${ }^{4}$

arXiv:2307.11271
Quantum TUT Workshop 2024

Self-Introduction and Abstract

- Hayato Arai
- Post-Doc at Riken, Group of Bartosz Regula
- (Now) Mainly working on Non-IID Hypothesis Testing
- Working on Foundation (in Ph.D Thesis)

Today's Talk

- Field: Foundation of Quantum Theory
- Aim : Derivation of Model of Quantum Theory
- Method: State Discrimination in General Probabilistic Theories
- Results (details in later)
(1) A Tight Bound for 2-State Discrimination in General Models

2. Equivalent Condition for Violation of Quantum Bound
(3) Derivation of Quantum Theory via State Discrimination!

Motivation of GPTs

- General Probabilistic Theories (GPTs) is a modern general structure focusing on probabilistic structures obtained by states and measurements
- The requirement of GPTs is weak \rightarrow there are many available models in GPTs except for quantum and classical theory.
- The aim of GPTs is to find a "good" postulate to single out QT
- Preceding studies are imperfect because some cannot characterize quantum theory uniquely, others are not operationally meaningful.

Motivation of GPTs

- General Probabilistic Theories (GPTs) is a modern general structure focusing on probabilistic structures obtained by states and measurements
- The requirement of GPTs is weak \rightarrow there are many available models in GPTs except for quantum and classical theory.
- The aim of GPTs is to find a "good" postulate to single out QT
- Preceding studies are imperfect because some cannot characterize quantum theory uniquely, others are not operationally meaningful.

Motivation of GPTs

- General Probabilistic Theories (GPTs) is a modern general structure focusing on probabilistic structures obtained by states and measurements
- The requirement of GPTs is weak \rightarrow there are many available models in GPTs except for quantum and classical theory.
- The aim of GPTs is to find a "good" postulate to single out QT
- Preceding studies are imperfect because some cannot characterize quantum theory uniquely, others are not operationally meaningful.

Motivation of GPTs

- General Probabilistic Theories (GPTs) is a modern general structure focusing on probabilistic structures obtained by states and measurements
- The requirement of GPTs is weak \rightarrow there are many available models in GPTs except for quantum and classical theory.
- The aim of GPTs is to find a "good" postulate to single out QT
- Preceding studies are imperfect because some cannot characterize quantum theory uniquely, others are not operationally meaningful.

Postulates	Operational Meaning	Single Out QT
No-Cloning [Barnum2006]	No-Go	\times
Tsirelson's bound [Barnum2010]	Bound Performance	\times
Purification $+\alpha$ [Chiribella2011]	$?$	\checkmark
Bit-symmetry $+\alpha$ [Barnum2019]	$?$	\checkmark
$?$	\checkmark	\checkmark

Motivation of GPTs

- General Probabilistic Theories (GPTs) is a modern general structure focusing on probabilistic structures obtained by states and measurements
- The requirement of GPTs is weak \rightarrow there are many available models in GPTs except for quantum and classical theory.
- The aim of GPTs is to find a "good" postulate to single out QT
- Preceding studies are imperfect because some cannot characterize quantum theory uniquely, others are not operationally meaningful.

Postulates	Operational Meaning	Single Out QT
No-Cloning [Barnum2006]	No-Go	\times
Tsirelson's bound [Barnum2010]	Bound Performance	\times
Purification $+\alpha$ [Chiribella2011]	$?$	\checkmark
Bit-symmetry $+\alpha$ [Barnum2019]	$?$	\checkmark
2-State Discrimination [Today]	Bound Performance	\checkmark

Preliminary

- positive (proper) cone $\mathcal{C} \subset \mathcal{V}$
\mathcal{V} : Finite-Dimensional Real-Vector Space (with Inner Product 〈, ,)

Assumption and Notation \mathcal{H} : finite-dim. Hilbert sp. $\mathcal{L}_{\mathrm{H}}(\mathcal{H})$: set of Hermitian matrices on \mathcal{H}
$\mathcal{L}_{\mathrm{H}}^{+}(\mathcal{H})$: set of positive semi-definite matrices on \mathcal{H}

- closed, convex, has non-empty interior
- $\forall x \in \mathcal{C}, \forall r \geq 0, r x \in \mathcal{C}$
- $\mathcal{C} \cap(-\mathcal{C})=\{0\}$
- dual cone $\mathcal{C}^{*}:=\left\{f \in \mathcal{V}^{*} \mid f(x) \geq 0 \forall x \in \mathcal{C}\right\}$
- A Typical Example
- $\mathcal{L}_{\mathrm{H}}^{+}(\mathcal{H}) \quad\left(\mathcal{L}_{\mathrm{H}}^{+}(\mathcal{H})^{*}:=\left\{f(x):=\operatorname{Tr} x y \mid y \in \mathcal{L}_{\mathrm{H}}^{+}(\mathcal{H})\right\}\right.$

$$
\left.\simeq \mathcal{L}_{\mathrm{H}}^{+}(\mathcal{H})\right)
$$

- In this study, we mainly consider the case $\mathcal{V}=\mathcal{L}_{\mathrm{H}}(\mathcal{H})$ with the Frobenius inner product $\langle X, Y\rangle=\operatorname{Tr} X Y$

Definition of a model GPTs

A model of GPTs is defined by $\mathcal{C} \subset \mathcal{V}$ with an normalization effect $u \in \mathcal{V}^{*}$

Correspondence

$$
\begin{array}{ccc}
\mathrm{GPT} & & \mathrm{QT} \\
\mathcal{C} & \leftrightarrow & \mathcal{L}_{\mathrm{H}}^{+}(\mathcal{H})
\end{array}
$$

- State ρ (Generalization of density matrix)
- $\rho \in \mathcal{C}$
- $u(\rho)=1$
- Measurement $\left\{M_{i}\right\}_{i}$ (Generalization of POVM)
- $M_{i} \in \mathcal{C}^{*}$

$$
\begin{aligned}
\Leftrightarrow & M_{i}(\rho) \geq 0(\forall \rho \in \mathcal{C}) \\
& \bullet \sum_{i} M_{i}=u
\end{aligned}
$$

- When a state ρ is measured by $\left\{M_{i}\right\}$
\rightarrow The outcome i is obtained w.p. $p_{i}=M_{i}(\rho)$
\rightarrow The model of GPTs is determine by \mathcal{C}

Definition of a model GPTs

A model of GPTs defined by $\mathcal{C} \subset \mathcal{V}$ with normalization effect $u \in \mathcal{V}^{*}$

Correspondence

$$
\begin{array}{ccc}
\text { GPT } & & \text { QT } \\
\mathcal{C} & \leftrightarrow & \mathcal{L}_{\mathrm{H}}^{+}(\mathcal{H})
\end{array}
$$

- State ρ (Generalization of density matrix)
- $\rho \in \mathcal{C}$
- $u(\rho)=1$
- Measurement $\left\{M_{i}\right\}_{i}$ (Generalization of POVM)
- $M_{i} \in \mathcal{C}^{*}$
$\Leftrightarrow M_{i}(\rho) \geq 0(\forall \rho \in \mathcal{C})$
- $\sum_{i} M_{i}=u$
- When a state ρ is measured by $\left\{M_{i}\right\}$
\rightarrow The outcome i is obtained w.p. $p_{i}=M_{i}(\rho)$
\rightarrow The model of GPTs is determine by \mathcal{C}

(Roughly) Definition of a model GPTs

Quantum Theory (QT) on Hilbert Space \mathcal{H}

- State ρ (density matrix)
- $\rho \in \mathcal{L}_{\mathrm{H}}^{+}(\mathcal{H})$
- $\operatorname{Tr} \rho=1$
- Measurement $\left\{M_{i}\right\}_{i}$ (POVM)
- $M_{i} \in \mathcal{L}_{\mathrm{H}}^{+}(\mathcal{H})$
$\Leftrightarrow \operatorname{Tr} \rho M_{i} \geq 0\left(\forall \rho \in \mathcal{L}_{\mathrm{H}}^{+}(\mathcal{H})\right)$
- $\sum_{i} M_{i}=I$
- When a state ρ is measured by $\left\{M_{i}\right\}$

Correspondence

$$
\begin{array}{ccc}
\text { GPT } & & \text { QT } \\
\mathcal{C} & \leftrightarrow & \mathcal{L}_{\mathrm{H}}^{+}(\mathcal{H})
\end{array}
$$

Requirement

- $\left\{p_{i}\right\}$ is probability distribution
- $\operatorname{Tr} \rho M_{i} \geq 0$
- $\sum_{i} \operatorname{Tr} \rho M_{i}=1$
\rightarrow The outcome i is obtained w.p. $p_{i}=\operatorname{Tr} \rho M_{i}$
\rightarrow The model of QT is determine by $\mathcal{L}_{\mathrm{H}}^{+}(\mathcal{H})$

Definition of a model GPTs

A Q-like model of GPTs is defined by $\mathcal{C} \subset \mathcal{L}_{\mathrm{H}}(\mathcal{H})$

- State ρ
- $\rho \in \mathcal{C}$
- $\operatorname{Tr} \rho=1$
- Measurement $\left\{M_{i}\right\}_{i}$
- $M_{i} \in \mathcal{C}^{*}\left(\subset \mathcal{L}_{\mathrm{H}}(\mathcal{H})\right)$
$\Leftrightarrow \operatorname{Tr} \rho M_{i} \geq 0(\forall \rho \in \mathcal{C})$
$* \sum_{i} M_{i}=I$
- Probability to get an outcome i
- The outcome i is obtained w.p. $p_{i}=\operatorname{Tr} \rho M_{i}$
\rightarrow A Q-like is determined by \mathcal{C}

Correspondence

$$
\begin{array}{ccc}
\text { GPT } & & \text { QT } \\
\mathcal{C} & \leftrightarrow & \mathcal{L}_{\mathrm{H}}^{+}(\mathcal{H})
\end{array}
$$

Requirement

- $\left\{p_{i}\right\}$ is probability distribution
- $\operatorname{Tr} \rho M_{i} \geq 0$
- $\sum_{i} \operatorname{Tr} \rho M_{i}=1$

Definition of a model GPTs

An example of Q -like models defined by $\mathcal{L}_{\mathrm{H}}^{+}\left(\mathcal{H}_{A}\right) \otimes \mathcal{L}_{\mathrm{H}}^{+}\left(\mathcal{H}_{B}\right) \subset \mathcal{L}_{\mathrm{H}}\left(\mathcal{H}_{A} \otimes \mathcal{H}_{B}\right)$

- State ρ
- $\rho \in \mathcal{L}_{\mathrm{H}}^{+}\left(\mathcal{H}_{A}\right) \otimes \mathcal{L}_{\mathrm{H}}^{+}\left(\mathcal{H}_{B}\right)$
- $\operatorname{Tr} \rho=1$
- Measurement $\left\{M_{i}\right\}_{i}$
- $M_{i} \in\left(\mathcal{L}_{\mathrm{H}}^{+}\left(\mathcal{H}_{A}\right) \otimes \mathcal{L}_{\mathrm{H}}^{+}\left(\mathcal{H}_{B}\right)\right)^{*}$
$\Leftrightarrow \operatorname{Tr} \rho M_{i} \geq 0\left(\forall \rho \in \mathcal{L}_{\mathrm{H}}^{+}\left(\mathcal{H}_{A}\right) \otimes \mathcal{L}_{\mathrm{H}}^{+}\left(\mathcal{H}_{B}\right)\right)$
- $\sum_{i} M_{i}=I$
ex: Partial Transposed Entanlement (Beyond POVMs)

$$
\begin{aligned}
& \text { Correspondence } \\
& \qquad \begin{array}{ccc}
\\
\qquad \text { GPT } & & \\
\mathcal{C} & \leftrightarrow & \mathcal{L}_{\mathrm{H}}^{+}(\mathcal{H})
\end{array}
\end{aligned}
$$

- $\left\{p_{i}\right\}$ is probability distribution
- $\operatorname{Tr} \rho M_{i} \geq 0$
- $\sum_{i} \operatorname{Tr} \rho M_{i}=1$
- Probability to get an outcome i
- The outcome i is obtained w.p. $p_{i}=\operatorname{Tr} \rho M_{i}$
\rightarrow A Q-like is determined by $\mathcal{L}_{\mathrm{H}}^{+}\left(\mathcal{H}_{A}\right) \otimes \mathcal{L}_{\mathrm{H}}^{+}\left(\mathcal{H}_{B}\right)$

Isomorphism in models of GPTs

An isomorphism f from a model $\boldsymbol{G}=(\mathcal{C}, u)$ to $\tilde{\boldsymbol{G}}=(\tilde{\mathcal{C}}, \tilde{u})$ is defined as

- f is a linear isomorphism from \mathcal{V} to $\tilde{\mathcal{V}}(\operatorname{dim}(\mathcal{V})=\operatorname{dim}(\tilde{\mathcal{V}}))$
- $\tilde{\mathcal{C}}=f(\mathcal{C})$
- $\tilde{u} \circ f=c u$ for a constant $c>0$
- $\tilde{\rho}=\frac{1}{c} f(\rho)$
- $\tilde{M}_{i}=c M_{i} \circ f^{-1}$
$\rightarrow \tilde{M}_{i}(\tilde{\rho})=c M_{i} \circ f^{-1}\left(\frac{1}{c} f(\rho)\right)=M_{i}(\rho)$
- Therefore, the two model G and \tilde{G} are equivalent from the viewpoint of probabilistic structures obtained from states and measurements
- Any model with d^{2}-dimensional vector space can be isomophic to a Q-like model

Isomorphism in models of GPTs

An isomorphism f from a model $\boldsymbol{G}=(\mathcal{C}, u)$ to $\tilde{\boldsymbol{G}}=(\tilde{\mathcal{C}}, \tilde{u})$ is defined as

- f is a linear isomorphism from \mathcal{V} to $\tilde{\mathcal{V}}(\operatorname{dim}(\mathcal{V})=\operatorname{dim}(\tilde{\mathcal{V}}))$
- $\tilde{\mathcal{C}}=f(\mathcal{C})$
- $\tilde{u} \circ f=c u$ for a constant $c>0$
- $\tilde{\rho}=\frac{1}{c} f(\rho)$
- $\tilde{M}_{i}=c M_{i} \circ f^{-1}$
$\rightarrow \tilde{M}_{i}(\tilde{\rho})=c M_{i} \circ f^{-1}\left(\frac{1}{c} f(\rho)\right)=M_{i}(\rho)$
- Therefore, the two model \boldsymbol{G} and $\tilde{\boldsymbol{G}}$ are equivalent from the viewpoint of probabilistic structures obtained from states and measurements
- Any model with d^{2}-dimensional vector space can be isomophic to a Q-like model

Isomorphism in models of GPTs

An isomorphism f from a model $\boldsymbol{G}=(\mathcal{C}, u)$ to $\tilde{\boldsymbol{G}}=(\tilde{\mathcal{C}}, \tilde{u})$ is defined as

- f is a linear isomorphism from \mathcal{V} to $\tilde{\mathcal{V}}(\operatorname{dim}(\mathcal{V})=\operatorname{dim}(\tilde{\mathcal{V}}))$
- $\tilde{\mathcal{C}}=f(\mathcal{C})$
- $\tilde{u} \circ f=c u$ for a constant $c>0$
- $\tilde{\rho}=\frac{1}{c} f(\rho)$
- $\tilde{M}_{i}=c M_{i} \circ f^{-1}$
$\rightarrow \tilde{M}_{i}(\tilde{\rho})=c M_{i} \circ f^{-1}\left(\frac{1}{c} f(\rho)\right)=M_{i}(\rho)$
- Therefore, the two model \boldsymbol{G} and $\tilde{\boldsymbol{G}}$ are equivalent from the viewpoint of probabilistic structures obtained from states and measurements
- Any model with d^{2}-dimensional vector space can be isomophic to a Q-like model

2-State Discrimination

- Given an unknown state ρ prepared as ρ_{0}, ρ_{1} with probability $p, 1-p$, to identify the state ρ by one-shot measurement $\boldsymbol{M}=\left\{M_{0}, M_{1}\right\}$ with high probability
- Total error probability is given as

$$
\operatorname{Err}\left(\rho_{0} ; \rho_{1} ; p ; \boldsymbol{M}\right):=p \operatorname{Tr} \rho_{0} M_{1}+(1-p) \operatorname{Tr} \rho_{1} M_{0}
$$

- In QT, the error probability is bounded as Quantum Bound (Helstrom Bound)

$$
\operatorname{Err}\left(\rho_{0} ; \rho_{1} ; p ; \boldsymbol{M}\right) \geq \frac{1}{2}-\frac{1}{2}\left\|p \rho_{0}-(1-p) \rho_{1}\right\|_{1}
$$

high probability

2-State Discrimination

- Given an unknown state ρ prepared as ρ_{0}, ρ_{1} with probability $p, 1-p$, to identify the state ρ by one-shot measurement $\boldsymbol{M}=\left\{M_{0}, M_{1}\right\}$ with high probability
- Total error probability is given as

$$
\operatorname{Err}\left(\rho_{0} ; \rho_{1} ; p ; \boldsymbol{M}\right):=p \operatorname{Tr} \rho_{0} M_{1}+(1-p) \operatorname{Tr} \rho_{1} M_{0}
$$

- In QT, the error probability is bounded as Quantum Bound (Helstrom Bound)

$$
\operatorname{Err}\left(\rho_{0} ; \rho_{1} ; p ; \boldsymbol{M}\right) \geq \frac{1}{2}-\frac{1}{2}\left\|p \rho_{0}-(1-p) \rho_{1}\right\|_{1}
$$

high probability

2-State Discrimination

- Given an unknown state ρ prepared as ρ_{0}, ρ_{1} with probability $p, 1-p$, to identify the state ρ by one-shot measurement $\boldsymbol{M}=\left\{M_{0}, M_{1}\right\}$ with high probability
- Total error probability is given as

$$
\operatorname{Err}\left(\rho_{0} ; \rho_{1} ; p ; \boldsymbol{M}\right):=p \operatorname{Tr} \rho_{0} M_{1}+(1-p) \operatorname{Tr} \rho_{1} M_{0}
$$

- In QT, the error probability is bounded as Quantum Bound (Helstrom Bound)

$$
\operatorname{Err}\left(\rho_{0} ; \rho_{1} ; p ; \boldsymbol{M}\right) \geq \frac{1}{2}-\frac{1}{2}\left\|p \rho_{0}-(1-p) \rho_{1}\right\|_{1}
$$

2-State Discrimination

- Given an unknown state ρ prepared as ρ_{0}, ρ_{1} with probability $p, 1-p$, to identify the state ρ by one-shot measurement $\boldsymbol{M}=\left\{M_{0}, M_{1}\right\}$ with high probability
- Total error probability is given as

$$
\operatorname{Err}\left(\rho_{0} ; \rho_{1} ; p ; \boldsymbol{M}\right):=p \operatorname{Tr} \rho_{0} M_{1}+(1-p) \operatorname{Tr} \rho_{1} M_{0}
$$

- In QT, the error probability is bounded as Quantum Bound (Helstrom Bound)

$$
\operatorname{Err}\left(\rho_{0} ; \rho_{1} ; p ; \boldsymbol{M}\right) \geq \frac{1}{2}-\frac{1}{2}\left\|p \rho_{0}-(1-p) \rho_{1}\right\|_{1}
$$

- In the case $\mathcal{C}=\mathcal{L}_{\mathrm{H}}^{+}\left(\mathcal{H}_{A}\right) \otimes \mathcal{L}_{\mathrm{H}}^{+}\left(\mathcal{H}_{B}\right)$, there exists non-orthogonal perfectly distinguishable states ρ_{0}, ρ_{1}
$\rightarrow \operatorname{Err}\left(\rho_{0} ; \rho_{1} ; p ; \boldsymbol{M}\right)=0$, and $\operatorname{Tr} \rho_{0} \rho_{1}>0\left(\Rightarrow\left\|\rho_{0}-\rho_{1}\right\|<2\right)$
\rightarrow Violates Quantum Bound ($p=1 / 2$)

Example

$$
M_{0}:=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\Gamma\left(\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right]\right), \quad M_{1}:=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

- The measurement $\left\{M_{0}, M_{1}\right\}$ can perfectly discriminate non-orthogonal separable states ρ_{0}, ρ_{1} defined as

$$
\rho_{0}:=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \rho_{1}:=\frac{1}{4}\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right],
$$

- They satisfies $\operatorname{Tr} \rho_{i} M_{j}=\delta_{i j}$
- However, $\operatorname{Tr} \rho_{0} \rho_{1}>0$

General Bound of Error Probability in 2-State Discrimination

- For a two-outcome measurement $\boldsymbol{M}=\left\{M_{0}, M_{1}\right\}$, we define

$$
r(\boldsymbol{M}):=\lambda_{\max }\left(M_{i}\right)-\lambda_{\min }\left(M_{i}\right), \quad r^{\prime}(\boldsymbol{M}, i):=\lambda_{\max }\left(M_{i}\right)+\lambda_{\min }\left(M_{i}\right) .
$$

- Because $M_{0}+M_{1}=I$, the value $r(\boldsymbol{M})$ is independent of i

$$
\because \lambda_{\max }\left(M_{1}\right)=1-\lambda_{\min }\left(M_{0}\right), \lambda_{\min }\left(M_{1}\right)=1-\lambda_{\max }\left(M_{0}\right)
$$

Theorem 1 (General Lower Bound)

Consider a (Q-like) model. Any pair of two states ρ_{0}, ρ_{1} and any measurement $M=\left\{M_{0}, M_{1}\right\}$ in the model satisfy

$$
\begin{equation*}
\operatorname{Err}\left(\rho_{0} ; \rho_{1} ; p ; \boldsymbol{M}\right) \geq \frac{1}{2}-\frac{1}{2}\left\|p \rho_{0}-(1-p) \rho_{1}\right\|_{1} r(\boldsymbol{M})-\frac{1}{2}(2 p-1)\left(r^{\prime}(\boldsymbol{M}, 0)-1\right) \tag{1}
\end{equation*}
$$

- \boldsymbol{M} is a $\mathrm{POVM} \Rightarrow r(\boldsymbol{M}) \leq 1, \boldsymbol{M}$ is optimal in QT $\Rightarrow r^{\prime}(\boldsymbol{M}, i)=1$
\rightarrow (1) reproduce Quantum Bound.
- There exist ρ_{i} and p satisfies the equality of (1) (Tight!)

General Bound of Error Probability in 2-State Discrimination

- For a two-outcome measurement $\boldsymbol{M}=\left\{M_{0}, M_{1}\right\}$, we define

$$
r(\boldsymbol{M}):=\lambda_{\max }\left(M_{i}\right)-\lambda_{\min }\left(M_{i}\right), \quad r^{\prime}(\boldsymbol{M}, i):=\lambda_{\max }\left(M_{i}\right)+\lambda_{\min }\left(M_{i}\right) .
$$

- Because $M_{0}+M_{1}=I$, the value $r(\boldsymbol{M})$ is independent of i

$$
\because \lambda_{\max }\left(M_{1}\right)=1-\lambda_{\min }\left(M_{0}\right), \lambda_{\min }\left(M_{1}\right)=1-\lambda_{\max }\left(M_{0}\right)
$$

Theorem 1 (General Lower Bound)

Consider a (Q-like) model. Any pair of two states ρ_{0}, ρ_{1} and any measurement $\boldsymbol{M}=\left\{M_{0}, M_{1}\right\}$ in the model satisfy

$$
\begin{equation*}
\operatorname{Err}\left(\rho_{0} ; \rho_{1} ; p ; \boldsymbol{M}\right) \geq \frac{1}{2}-\frac{1}{2}\left\|p \rho_{0}-(1-p) \rho_{1}\right\|_{1} r(\boldsymbol{M})-\frac{1}{2}(2 p-1)\left(r^{\prime}(\boldsymbol{M}, 0)-1\right) \tag{1}
\end{equation*}
$$

- \boldsymbol{M} is a $\mathrm{POVM} \Rightarrow r(\boldsymbol{M}) \leq 1, \boldsymbol{M}$ is optimal in QT $\Rightarrow r^{\prime}(\boldsymbol{M}, i)=1$
\rightarrow (1) reproduce Quantum Bound.
- There exist ρ_{i} and p satisfies the equality of (1) (Tight!)

General Bound of Error Probability in 2-State Discrimination

- For a two-outcome measurement $\boldsymbol{M}=\left\{M_{0}, M_{1}\right\}$, we define

$$
r(\boldsymbol{M}):=\lambda_{\max }\left(M_{i}\right)-\lambda_{\min }\left(M_{i}\right), \quad r^{\prime}(\boldsymbol{M}, i):=\lambda_{\max }\left(M_{i}\right)+\lambda_{\min }\left(M_{i}\right) .
$$

- Because $M_{0}+M_{1}=I$, the value $r(\boldsymbol{M})$ is independent of i

$$
\because \lambda_{\max }\left(M_{1}\right)=1-\lambda_{\min }\left(M_{0}\right), \lambda_{\min }\left(M_{1}\right)=1-\lambda_{\max }\left(M_{0}\right)
$$

Theorem 1 (General Lower Bound)

Consider a (Q-like) model. Any pair of two states ρ_{0}, ρ_{1} and any measurement $\boldsymbol{M}=\left\{M_{0}, M_{1}\right\}$ in the model satisfy

$$
\begin{equation*}
\operatorname{Err}\left(\rho_{0} ; \rho_{1} ; p ; \boldsymbol{M}\right) \geq \frac{1}{2}-\frac{1}{2}\left\|p \rho_{0}-(1-p) \rho_{1}\right\|_{1} r(\boldsymbol{M})-\frac{1}{2}(2 p-1)\left(r^{\prime}(\boldsymbol{M}, 0)-1\right) \tag{1}
\end{equation*}
$$

- \boldsymbol{M} is a POVM $\Rightarrow r(\boldsymbol{M}) \leq 1, \boldsymbol{M}$ is optimal in QT $\Rightarrow r^{\prime}(\boldsymbol{M}, i)=1$
\rightarrow (1) reproduce Quantum Bound.
- There exist ρ_{i} and p satisfies the equality of (1) (Tight!)

General Bound of Error Probability in 2-State Discrimination

- For a two-outcome measurement $\boldsymbol{M}=\left\{M_{0}, M_{1}\right\}$, we define

$$
r(\boldsymbol{M}):=\lambda_{\max }\left(M_{i}\right)-\lambda_{\min }\left(M_{i}\right), \quad r^{\prime}(\boldsymbol{M}, i):=\lambda_{\max }\left(M_{i}\right)+\lambda_{\min }\left(M_{i}\right) .
$$

- Because $M_{0}+M_{1}=I$, the value $r(\boldsymbol{M})$ is independent of i

$$
\because \lambda_{\max }\left(M_{1}\right)=1-\lambda_{\min }\left(M_{0}\right), \lambda_{\min }\left(M_{1}\right)=1-\lambda_{\max }\left(M_{0}\right)
$$

Theorem 1 (General Lower Bound)

Consider a (Q-like) model. Any pair of two states ρ_{0}, ρ_{1} and any measurement $\boldsymbol{M}=\left\{M_{0}, M_{1}\right\}$ in the model satisfy

$$
\begin{equation*}
\operatorname{Err}\left(\rho_{0} ; \rho_{1} ; p ; \boldsymbol{M}\right) \geq \frac{1}{2}-\frac{1}{2}\left\|p \rho_{0}-(1-p) \rho_{1}\right\|_{1} r(\boldsymbol{M})-\frac{1}{2}(2 p-1)\left(r^{\prime}(\boldsymbol{M}, 0)-1\right) \tag{1}
\end{equation*}
$$

- \boldsymbol{M} is a POVM $\Rightarrow r(\boldsymbol{M}) \leq 1, \boldsymbol{M}$ is optimal in QT $\Rightarrow r^{\prime}(\boldsymbol{M}, i)=1$
\rightarrow (1) reproduce Quantum Bound.
- There exist ρ_{i} and p satisfies the equality of (1) (Tight!)

General Bound of Error Probability in 2-State Discrimination

- For a two-outcome measurement $\boldsymbol{M}=\left\{M_{0}, M_{1}\right\}$, we define

$$
r(\boldsymbol{M}):=\lambda_{\max }\left(M_{i}\right)-\lambda_{\min }\left(M_{i}\right), \quad r^{\prime}(\boldsymbol{M}, i):=\lambda_{\max }\left(M_{i}\right)+\lambda_{\min }\left(M_{i}\right) .
$$

- Because $M_{0}+M_{1}=I$, the value $r(\boldsymbol{M})$ is independent with i

$$
\because \lambda_{\max }\left(M_{1}\right)=1-\lambda_{\min }\left(M_{0}\right), \lambda_{\min }\left(M_{1}\right)=1-\lambda_{\max }\left(M_{0}\right)
$$

Theorem 1 (General Lower Bound)

Consider a (Q-like) model. Any pair of two states ρ_{0}, ρ_{1} and any measurement $\boldsymbol{M}=\left\{M_{0}, M_{1}\right\}$ in the model satisfy

$$
\begin{equation*}
\operatorname{Err}\left(\rho_{0} ; \rho_{1} ; p ; \boldsymbol{M}\right) \geq \frac{1}{2}-\frac{1}{2}\left\|p \rho_{0}-(1-p) \rho_{1}\right\|_{1} r(\boldsymbol{M})-\frac{1}{2}(2 p-1)\left(r^{\prime}(\boldsymbol{M}, 0)-1\right) . \tag{2}
\end{equation*}
$$

- In the case $p=1 / 2$, the tight bound is simply given by $r(\boldsymbol{M})$
- By applying this, an equivalnt condition for violation of Quantum Bound

Equivalent Condition for Violation of Quantum Bound

Theorem 2 (Equivalent Condition for Violation of Quantum Bound)

Consider a (Q-like) model. Given a measurement $\boldsymbol{M}=\left\{M_{0}, M_{1}\right\}$ in the model, the following two conditions are equivalent:
(1) There exist two states ρ_{0} and ρ_{1} in the model such that

$$
\begin{equation*}
\operatorname{Err}\left(\rho_{0} ; \rho_{1} ; p=\frac{1}{2} ; \boldsymbol{M}\right)<\frac{1}{2}-\frac{1}{2}\left\|\frac{1}{2} \rho_{0}-\frac{1}{2} \rho_{1}\right\|_{1} . \tag{3}
\end{equation*}
$$

(2) $r(\boldsymbol{M})>1$.

- If there exists a measurement \boldsymbol{M} with $r(\boldsymbol{M})>1$, the model violates Quantum Bound
- If a beyond-POVM measurements \boldsymbol{M} satisfies $r(\boldsymbol{M}) \leq 1$, then the measurement does not violate Quantum Bound for any states
Q. Does this uniquely characterize QT? \rightarrow Yes!

Equivalent Condition for Violation of Quantum Bound

Theorem 2 (Equivalent Condition for Violation of Quantum Bound)

Consider a (Q-like) model. Given a measurement $\boldsymbol{M}=\left\{M_{0}, M_{1}\right\}$ in the model, the following two conditions are equivalent:
(1) There exist two states ρ_{0} and ρ_{1} in the model such that

$$
\begin{equation*}
\operatorname{Err}\left(\rho_{0} ; \rho_{1} ; p=\frac{1}{2} ; \boldsymbol{M}\right)<\frac{1}{2}-\frac{1}{2}\left\|\frac{1}{2} \rho_{0}-\frac{1}{2} \rho_{1}\right\|_{1} . \tag{3}
\end{equation*}
$$

(2) $r(\boldsymbol{M})>1$.

- If there exists a measurement \boldsymbol{M} with $r(\boldsymbol{M})>1$, the model violates Quantum Bound
- If a beyond-POVM measurements \boldsymbol{M} satisfies $r(\boldsymbol{M}) \leq 1$, then the measurement does not violate Quantum Bound for any states
Q. Does this uniquely characterize QT? \rightarrow Yes!

Equivalent Condition for Violation of Quantum Bound

Theorem 2 (Equivalent Condition for Violation of Quantum Bound)

Consider a (Q-like) model. Given a measurement $\boldsymbol{M}=\left\{M_{0}, M_{1}\right\}$ in the model, the following two conditions are equivalent:
(1) There exist two states ρ_{0} and ρ_{1} in the model such that

$$
\begin{equation*}
\operatorname{Err}\left(\rho_{0} ; \rho_{1} ; p=\frac{1}{2} ; \boldsymbol{M}\right)<\frac{1}{2}-\frac{1}{2}\left\|\frac{1}{2} \rho_{0}-\frac{1}{2} \rho_{1}\right\|_{1} . \tag{3}
\end{equation*}
$$

(2) $r(\boldsymbol{M})>1$.

- If there exists a measurement \boldsymbol{M} with $r(\boldsymbol{M})>1$, the model violates Quantum Bound
- If a beyond-POVM measurements \boldsymbol{M} satisfies $r(\boldsymbol{M}) \leq 1$, then the measurement does not violate Quantum Bound for any states
Q. Does this uniquely characterize QT? \rightarrow Yes!

Derivation of Quantum Theory via State Discrimination

Theorem 3 (Derivation of QT via state discrimination)

Consider a (general) model \boldsymbol{G}. The following conditions are equivalent:
(1) $G=Q T$
(2) There exists an isometric map G to (Q-like) model \tilde{G} such that
A. Any state in $\tilde{\boldsymbol{G}}$ is a density matrix (quantum state)
B. Any state $\rho_{0}, \rho_{1}, 0<p<1$, and any measurement \boldsymbol{M} in $\tilde{\boldsymbol{G}}$ satisfies Quantum Bound

- Condition 2
\Leftrightarrow embedding state space into quantum state space with satisfying Quantum Bound
- No model satisfies Quantum Bound but violates other properties of quantum theory
- State discrimination is dominant task over beyond-quantum performances for all tasks

Derivation of Quantum Theory via State Discrimination

Theorem 3 (Derivation of QT via state discrimination)

Consider a (general) model \boldsymbol{G}. The following conditions are equivalent:
(1) $G=Q T$
(2) There exists an isometric map G to (Q-like) model \tilde{G} such that
A. Any state in $\tilde{\boldsymbol{G}}$ is a density matrix (quantum state)
B. Any state $\rho_{0}, \rho_{1}, 0<p<1$, and any measurement \boldsymbol{M} in $\tilde{\boldsymbol{G}}$ satisfies Quantum Bound

- Condition 2
\Leftrightarrow embedding state space into quantum state space with satisfying Quantum Bound
- No model satisfies Quantum Bound but violates other properties of quantum theory
- State discrimination is dominant task over beyond-quantum performances for all tasks

Derivation of Quantum Theory via State Discrimination

Theorem 3 (Derivation of QT via state discrimination)

Consider a (general) model \boldsymbol{G}. The following conditions are equivalent:
(1) $G=Q T$
(2) There exists an isometric map G to (Q-like) model \tilde{G} such that
A. Any state in $\tilde{\boldsymbol{G}}$ is a density matrix (quantum state)
B. Any state $\rho_{0}, \rho_{1}, 0<p<1$, and any measurement \boldsymbol{M} in $\tilde{\boldsymbol{G}}$ satisfies Quantum Bound

- Condition 2
\Leftrightarrow embedding state space into quantum state space with satisfying Quantum Bound
- No model satisfies Quantum Bound but violates other properties of quantum theory
- State discrimination is dominant task over beyond-quantum performances for all tasks

Derivation of Quantum Theory via State Discrimination

Theorem 3 (Derivation of QT via state discrimination)

Consider a (general) model \boldsymbol{G}. The following conditions are equivalent:
(1) $G=Q T$
(2) There exists an isometric map G to (Q-like) model \tilde{G} such that
A. Any state in $\tilde{\boldsymbol{G}}$ is a density matrix (quantum state)
B. Any state $\rho_{0}, \rho_{1}, 0<p<1$, and any measurement \boldsymbol{M} in $\tilde{\boldsymbol{G}}$ satisfies Quantum Bound

- Condition
\Leftrightarrow embeds
- No model
- State discı

vith satisfying Quantum Bound properties of quantum theory antum performances for all tasks

Derivation of Quantum Theory via State Discrimination

Theorem 3 (Derivation of QT via state discrimination)

Consider a (general) model \boldsymbol{G}. The following conditions are e
(1) $G=Q T$
(2) There exists an isometric map G to (Q-like) model \tilde{G} su
A. Any state in $\tilde{\boldsymbol{G}}$ is a density matrix (quantum state)
B. Any state $\rho_{0}, \rho_{1}, 0<p<1$, and any measurement M in

- isometric map exists
\Leftrightarrow background dimensions are the same
- if background dimension is not square number, both conditions 1 and 2 are false
- if background dimension is a square number, both conditions 1 and 2 are true
- Condition
\Leftrightarrow embedc
- No model
- State discı

vith satisfying Quantum Bound properties of quantum theory antum performances for all tasks

Derivation of Quantum Theory via State Discrimination

Theorem 3 (Derivation of QT via state discrimination)

Consider a (general) model \boldsymbol{G}. The following conditions are equivalent:
(1) $G=Q T$
(2) There exists an isometric map G to (Q-like) model \tilde{G} such that
A. Any state in $\tilde{\boldsymbol{G}}$ is a density matrix (quantum state)
B. Any state $\rho_{0}, \rho_{1}, 0<p<1$, and any measurement \boldsymbol{M} in $\tilde{\boldsymbol{G}}$ satisfies Quantum Bound

- Condition 2
\Leftrightarrow embedding state space into quantum state space with satisfying Quantum Bound
- No model satisfies Quantum Bound but violates other properties of quantum theory
- State discrimination is dominant task over beyond-quantum performances for all tasks

Derivation of Quantum Theory via State Discrimination

Theorem 3 (Derivation of QT via state discrimination)

Consider a (general) model \boldsymbol{G}. The following conditions are equivalent:
(1) $G=Q T$
(2) There exists an isometric map G to (Q-like) model \tilde{G} such that
A. Any state in $\tilde{\boldsymbol{G}}$ is a density matrix (quantum state)
B. Any state $\rho_{0}, \rho_{1}, 0<p<1$, and any measurement \boldsymbol{M} in $\tilde{\boldsymbol{G}}$ satisfies Quantum Bound

- Due to the condition $\tilde{\mathcal{C}} \subsetneq \mathcal{L}_{\mathrm{H}}^{+}(\mathcal{H})$, there exists a measurement beyond POVMs
- Even if a measurement is beyond POVMs, it is not trivial that there exists a measurement \boldsymbol{M} with $r(\boldsymbol{M})>1$
- Theorem 3 is non-trivial

Why Classical Theory Violates Condition 2?

- Classical Theory Violates Condition 2

2. There exists an isometric map \boldsymbol{G} to (Q-like) model \tilde{G} such that
A. Any state in $\tilde{\boldsymbol{G}}$ is a density matrix (quantum state)
B. Any state $\rho_{0}, \rho_{1}, 0<p<1$, and any measurement M in $\tilde{\boldsymbol{G}}$ satisfies Quantum Bound

- For existence of isomorphism to a Q-like model, the dimension of classical theory is d^{2}
\rightarrow There exists d^{2}-number of perfectly distinguishable classical states
\rightarrow They are embeded into density matrices
\rightarrow They must be non-orthogonal
\rightarrow A pair of non-orthogonal perfectly distinguishable states violates Quantum Bound in $p=1 / 2$

$$
\begin{equation*}
\operatorname{Err}\left(\rho_{0} ; \rho_{1} ; p=\frac{1}{2} ; \boldsymbol{M}\right) \nsupseteq \frac{1}{2}-\frac{1}{2}\left\|\frac{1}{2} \rho_{0}-\frac{1}{2} \rho_{1}\right\|_{1} . \tag{4}
\end{equation*}
$$

Why Classical Theory Violates Condition 2?

- Classical Theory Violates Condition 2

2. There exists an isometric map \boldsymbol{G} to (Q-like) model \tilde{G} such that
A. Any state in $\tilde{\boldsymbol{G}}$ is a density matrix (quantum state)
B. Any state $\rho_{0}, \rho_{1}, 0<p<1$, and any measurement M in $\tilde{\boldsymbol{G}}$ satisfies Quantum Bound

- For existence of isomorphism to a Q-like model, the dimension of classical theory is d^{2}
\rightarrow There exists d^{2}-number of perfectly distinguishable classical states
\rightarrow They are embeded into density matrices
\rightarrow They must be non-orthogonal
\rightarrow A pair of non-orthogonal perfectly distinguishable states violates Quantum Bound in $p=1 / 2$

$$
\begin{equation*}
\operatorname{Err}\left(\rho_{0} ; \rho_{1} ; p=\frac{1}{2} ; \boldsymbol{M}\right) \nsupseteq \frac{1}{2}-\frac{1}{2}\left\|\frac{1}{2} \rho_{0}-\frac{1}{2} \rho_{1}\right\|_{1} . \tag{4}
\end{equation*}
$$

Summary and Take-Home Message

- There are many models in GPTs except for quantum and classical theory
- There was no operational meaningful postulate to single out QT
- We show that QT is characterized by Quantum Bound of error probability in 2-state discrimination
- No model satisfies Quantum Bound but violates other properties of quantum theory
- New postulate to derive QT through performances for information tasks!
- Performance for state discrimination characterize the performances for all other tasks!

Open Problems

(1) Extension to the hypothesis testing and n-shot asymptotic setting

- Instead of the sum of errors, can we deal with each types of errors $\operatorname{Tr} \rho_{0} M_{1}$ and $\operatorname{Tr} \rho_{1} M_{0}$
- What is the general asymptotic rate?
(2) Relaxation of the condition about the existence of isomophism
- In this work, the condition of isomophism to Q-like model $\left(\operatorname{dim}(\mathcal{V})=d^{2}\right)$ is necessary to deal with trace norm
- We need more general measure of the performance for state discrimination

Open Problems

(1) Extension to the hypothesis testing and n-shot asymptotic setting

- Instead of the sum of errors, can we deal with each types of errors $\operatorname{Tr} \rho_{0} M_{1}$ and $\operatorname{Tr} \rho_{1} M_{0}$
- What is the general asymptotic rate?
(2) Relaxation of the condition about the existence of isomophism
- In this work, the condition of isomophism to Q-like model $\left(\operatorname{dim}(\mathcal{V})=d^{2}\right)$ is necessary to deal with trace norm
- We need more general measure of the performance for state discrimination

