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Self-Introduction and Abstract

• Hayato Arai
▶ Post-Doc at Riken, Group of Bartosz Regula
▶ (Now) Mainly working on Non-IID Hypothesis Testing
▶ Working on Foundation (in Ph.D Thesis)

Today’s Talk

• Field : Foundation of Quantum Theory

• Aim : Derivation of Model of Quantum Theory

• Method : State Discrimination in General Probabilistic Theories

• Results (details in later)

1 A Tight Bound for 2-State Discrimination in General Models
2 Equivalent Condition for Violation of Quantum Bound
3 Derivation of Quantum Theory via State Discrimination!
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Motivation of GPTs

• General Probabilistic Theories (GPTs) is a modern general structure focusing on
probabilistic structures obtained by states and measurements

• The requirement of GPTs is weak → there are many available models in GPTs except for
quantum and classical theory.

• The aim of GPTs is to find a “good” postulate to single out QT

• Preceding studies are imperfect because some cannot characterize quantum theory
uniquely, others are not operationally meaningful.
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The class of 

all models

in GPTs

QT

Classes of restricted models
Postulates Operational Meaning Single Out QT

No-Cloning [Barnum2006] No-Go ×
Tsirelson’s bound [Barnum2010] Bound Performance ×
Purification +α [Chiribella2011] ? ✓
Bit-symmetry +α [Barnum2019] ? ✓

? ✓ ✓

Postulates Operational Meaning Single Out QT

No-Cloning [Barnum2006] No-Go ×
Tsirelson’s bound [Barnum2010] Bound Performance ×
Purification +α [Chiribella2011] ? ✓
Bit-symmetry +α [Barnum2019] ? ✓
2-State Discrimination [Today] Bound Performance ✓
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Preliminary

• positive (proper) cone C ⊂ V
V : Finite-Dimensional Real-Vector Space
(with Inner Product ⟨ , ⟩)

▶ closed, convex, has non-empty interior
▶ ∀x ∈ C, ∀r ≥ 0, rx ∈ C
▶ C ∩ (−C) = {0}

• dual cone C∗ := {f ∈ V∗ | f(x) ≥ 0 ∀x ∈ C}
• A Typical Example

▶ L+
H(H) (L+

H(H)∗ := {f(x) := Trxy | y ∈ L+
H(H)}

≃ L+
H(H))

• In this study, we mainly consider the case V = LH(H) with the Frobenius inner product
⟨X,Y ⟩ = TrXY
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Assumption and Notation� �
H : finite-dim. Hilbert sp.

LH(H) : set of Hermitian

matrices on H
L+

H(H) : set of positive

semi-definite matrices on H� �

0



Definition of a model GPTs

A model of GPTs is defined by C ⊂ V
with an normalization effect u ∈ V∗

• State ρ (Generalization of density matrix)State ρ (Generalization of density matrix)
▶ ρ ∈ C
▶ u(ρ) = 1

• Measurement {Mi}i (Generalization of POVM)Measurement {Mi}i (Generalization of POVM)
▶ Mi ∈ C∗

⇔ Mi(ρ) ≥ 0 (∀ρ ∈ C)
▶
∑

i Mi = u

• When a state ρ is measured by {Mi}
→ The outcome i is obtained w.p. pi = Mi(ρ)w.p. pi = Mi(ρ)

→ The model of GPTs is determine by C

State ρ (Generalization of density matrix)

Measurement {Mi}i (Generalization of POVM)

w.p. pi = Mi(ρ)
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Correspondence� �
GPT QT
C ↔ L+

H(H)� �

0
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Correspondence� �
GPT QT
C ↔ L+

H(H)� �
Requirement� �
• {pi} is probability distribution

• Mi(ρ) ≥ 0

•
∑

iMi(ρ) = 1� �



(Roughly) Definition of a model GPTs

Quantum Theory (QT) on Hilbert Space H
• State ρ (density matrix)

▶ ρ ∈ L+
H(H)ρ ∈ L+
H(H)

▶ Tr ρ = 1
• Measurement {Mi}i (POVM)

▶ Mi ∈ L+
H(H)

⇔ Tr ρMi ≥ 0 (∀ρ ∈ L+
H(H))Tr ρMi ≥ 0 (∀ρ ∈ L+
H(H))

▶
∑

i Mi = I

• When a state ρ is measured by {Mi}
→ The outcome i is obtained w.p. pi = Tr ρMi

→ The model of QT is determine by L+
H(H)L+
H(H)

ρ ∈ L+
H(H)

Tr ρMi ≥ 0 (∀ρ ∈ L+
H(H))

L+
H(H)
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Correspondence� �
GPT QT
C ↔ L+

H(H)� �
Requirement� �
• {pi} is probability distribution
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•
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Definition of a model GPTs

A Q-like model of GPTs is defined by C ⊂ LH(H)

• State ρ
▶ ρ ∈ Cρ ∈ C
▶ Tr ρ = 1

• Measurement {Mi}i
▶ Mi ∈ C∗ (⊂ LH(H))

⇔ Tr ρMi ≥ 0 (∀ρ ∈ C)Tr ρMi ≥ 0 (∀ρ ∈ C)
▶
∑

i Mi = I
• Probability to get an outcome i

▶ The outcome i is obtained w.p. pi = Tr ρMi

→ A Q-like is determined by CC

ρ ∈ C

Tr ρMi ≥ 0 (∀ρ ∈ C)

C

H. Arai, M. Hayashi Derivation of Quantum Theory arXiv:2307.11271 8 / 21

Correspondence� �
GPT QT
C ↔ L+

H(H)� �
Requirement� �
• {pi} is probability distribution

• Tr ρMi ≥ 0

•
∑

iTr ρMi = 1� �



Definition of a model GPTs

An example of Q-like models
defined by L+

H(HA)⊗ L+
H(HB) ⊂ LH(HA ⊗HB)

• State ρ
▶ ρ ∈ L+

H(HA)⊗ L+
H(HB)ρ ∈ L+

H(HA)⊗ L+
H(HB)

▶ Tr ρ = 1
• Measurement {Mi}i

▶ Mi ∈
(
L+

H(HA)⊗ L+
H(HB)

)∗
⇔ Tr ρMi ≥ 0 (∀ρ ∈ L+

H(HA)⊗ L+
H(HB))Tr ρMi ≥ 0 (∀ρ ∈ L+

H(HA)⊗ L+
H(HB))

▶
∑

i Mi = I
ex: Partial Transposed Entanlement (Beyond POVMs)

• Probability to get an outcome i
▶ The outcome i is obtained w.p. pi = Tr ρMi

→ A Q-like is determined by L+
H(HA)⊗ L+

H(HB)L+
H(HA)⊗ L+

H(HB)

ρ ∈ L+
H(HA)⊗ L+

H(HB)

Tr ρMi ≥ 0 (∀ρ ∈ L+
H(HA)⊗ L+

H(HB))

L+
H(HA)⊗ L+

H(HB)
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Correspondence� �
GPT QT
C ↔ L+

H(H)� �
Requirement� �
• {pi} is probability distribution

• Tr ρMi ≥ 0

•
∑

iTr ρMi = 1� �



Isomorphism in models of GPTs

An isomorphism f from a model G = (C, u) to G̃ = (C̃, ũ) is defined as

• f is a linear isomorphism from V to Ṽ (dim(V) = dim(Ṽ))
• C̃ = f(C)
• ũ ◦ f = cu for a constant c > 0

• ρ̃ = 1
cf(ρ)

• M̃i = cMi ◦ f−1

→ M̃i(ρ̃) = cMi ◦ f−1
(
1
cf(ρ)

)
= Mi(ρ)

• Therefore, the two model G and G̃ are equivalent from the viewpoint of probabilistic
structures obtained from states and measurements

• Any model with d2-dimensional vector space can be isomophic to a Q-like model
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2-State Discrimination

• Given an unknown state ρ prepared as ρ0, ρ1 with probability p, 1− p, to identify the state
ρ by one-shot measurement M = {M0,M1} with high probability

• Total error probability is given as

Err(ρ0; ρ1; p;M) := pTr ρ0M1 + (1− p)Tr ρ1M0

• In QT, the error probability is bounded as Quantum Bound (Helstrom Bound)

Err(ρ0; ρ1; p;M) ≥ 1

2
− 1

2
∥pρ0 − (1− p)ρ1∥1

H. Arai, M. Hayashi Derivation of Quantum Theory arXiv:2307.11271 11 / 21
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2-State Discrimination
• Given an unknown state ρ prepared as ρ0, ρ1 with probability p, 1− p, to identify the state
ρ by one-shot measurement M = {M0,M1} with high probability

• Total error probability is given as

Err(ρ0; ρ1; p;M) := pTr ρ0M1 + (1− p)Tr ρ1M0

• In QT, the error probability is bounded as Quantum Bound (Helstrom Bound)

Err(ρ0; ρ1; p;M) ≥ 1

2
− 1

2
∥pρ0 − (1− p)ρ1∥1

• In the case C = L+
H(HA)⊗ L+

H(HB), there exists non-orthogonal perfectly distinguishable
states ρ0, ρ1

→ Err(ρ0; ρ1; p;M) = 0, and Tr ρ0ρ1 > 0 (⇒ ∥ρ0 − ρ1∥ < 2)

→ Violates Quantum Bound (p = 1/2)
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Example

M0 :=


1 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 1

 = Γ




1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1


 , M1 :=


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0


• The measurement {M0,M1} can perfectly discriminate non-orthogonal separable states
ρ0, ρ1 defined as

ρ0 :=


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , ρ1 :=
1

4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 ,

• They satisfies Tr ρiMj = δij

• However, Tr ρ0ρ1 > 0
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General Bound of Error Probability in 2-State Discrimination
• For a two-outcome measurement M = {M0,M1}, we define

r(M) := λmax(Mi)− λmin(Mi), r′(M , i) := λmax(Mi) + λmin(Mi).

• Because M0 +M1 = I, the value r(M) is independent of i
∵ λmax(M1) = 1− λmin(M0), λmin(M1) = 1− λmax(M0)

Theorem 1（General Lower Bound）
Consider a (Q-like) model. Any pair of two states ρ0, ρ1 and any measurement
M = {M0,M1} in the model satisfy

Err(ρ0; ρ1; p;M) ≥ 1

2
− 1

2
∥pρ0 − (1− p)ρ1∥1r(M)− 1

2
(2p− 1)

(
r′(M , 0)− 1

)
. (1)

• M is a POVM ⇒ r(M) ≤ 1, M is optimal in QT ⇒ r′(M , i) = 1

→ (1) reproduce Quantum Bound.

• There exist ρi and p satisfies the equality of (1) (Tight!)

H. Arai, M. Hayashi Derivation of Quantum Theory arXiv:2307.11271 14 / 21
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General Bound of Error Probability in 2-State Discrimination

• For a two-outcome measurement M = {M0,M1}, we define

r(M) := λmax(Mi)− λmin(Mi), r′(M , i) := λmax(Mi) + λmin(Mi).

• Because M0 +M1 = I, the value r(M) is independent with i

∵ λmax(M1) = 1− λmin(M0), λmin(M1) = 1− λmax(M0)

Theorem 1（General Lower Bound）
Consider a (Q-like) model. Any pair of two states ρ0, ρ1 and any measurement
M = {M0,M1} in the model satisfy

Err(ρ0; ρ1; p;M) ≥ 1

2
− 1

2
∥pρ0 − (1− p)ρ1∥1r(M)− 1

2
(2p− 1)

(
r′(M , 0)− 1

)
. (2)

• In the case p = 1/2, the tight bound is simply given by r(M)

• By applying this, an equivalnt condition for violation of Quantum Bound
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Equivalent Condition for Violation of Quantum Bound

Theorem 2（Equivalent Condition for Violation of Quantum Bound）
Consider a (Q-like) model. Given a measurement M = {M0,M1} in the model, the following
two conditions are equivalent:

1 There exist two states ρ0 and ρ1 in the model such that

Err(ρ0; ρ1; p =
1

2
;M) <

1

2
− 1

2
∥1
2
ρ0 −

1

2
ρ1∥1. (3)

2 r(M) > 1.

• If there exists a measurement M with r(M) > 1, the model violates Quantum Bound

• If a beyond-POVM measurements M satisfies r(M) ≤ 1, then the measurement does
not violate Quantum Bound for any states

Q. Does this uniquely characterize QT? → Yes!
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1 There exist two states ρ0 and ρ1 in the model such that

Err(ρ0; ρ1; p =
1

2
;M) <

1

2
− 1

2
∥1
2
ρ0 −

1

2
ρ1∥1. (3)

2 r(M) > 1.

• If there exists a measurement M with r(M) > 1, the model violates Quantum Bound

• If a beyond-POVM measurements M satisfies r(M) ≤ 1, then the measurement does
not violate Quantum Bound for any states

Q. Does this uniquely characterize QT? → Yes!
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Derivation of Quantum Theory via State Discrimination

Theorem 3（Derivation of QT via state discrimination）
Consider a (general) model G. The following conditions are equivalent:

1 G = QT

2 There exists an isometric map G to (Q-like) model G̃ such that

A. Any state in G̃ is a density matrix (quantum state)
B. Any state ρ0, ρ1, 0 < p < 1, and any measurement M in G̃ satisfies Quantum Bound

• Condition 2
⇔ embedding state space into quantum state space with satisfying Quantum Bound

• No model satisfies Quantum Bound but violates other properties of quantum theory

• State discrimination is dominant task over beyond-quantum performances for all tasks

H. Arai, M. Hayashi Derivation of Quantum Theory arXiv:2307.11271 17 / 21
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the same
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square number, both
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Derivation of Quantum Theory via State Discrimination

Theorem 3（Derivation of QT via state discrimination）
Consider a (general) model G. The following conditions are equivalent:

1 G = QT

2 There exists an isometric map G to (Q-like) model G̃ such that

A. Any state in G̃ is a density matrix (quantum state)
B. Any state ρ0, ρ1, 0 < p < 1, and any measurement M in G̃ satisfies Quantum Bound

• Due to the condition C̃ ⊊ L+
H(H), there exists a measurement beyond POVMs

• Even if a measurement is beyond POVMs,
it is not trivial that there exists a measurement M with r(M) > 1

• Theorem 3 is non-trivial
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Why Classical Theory Violates Condition 2?
• Classical Theory Violates Condition 2

2. There exists an isometric map G to (Q-like) model G̃ such that

A. Any state in G̃ is a density matrix (quantum state)
B. Any state ρ0, ρ1, 0 < p < 1, and any measurement M in G̃ satisfies Quantum Bound

• For existence of isomorphism to a Q-like model, the dimension of classical theory is d2

→ There exists d2-number of perfectly distinguishable classical states

→ They are embeded into density matrices

→ They must be non-orthogonal

→ A pair of non-orthogonal perfectly distinguishable states violates Quantum Bound in
p = 1/2

Err(ρ0; ρ1; p =
1

2
;M) ̸≥ 1

2
− 1

2
∥1
2
ρ0 −

1

2
ρ1∥1. (4)
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Summary and Take-Home Message

• There are many models in GPTs except for quantum and classical theory

• There was no operational meaningful postulate to single out QT

• We show that QT is characterized by Quantum Bound of error probability in 2-state
discrimination

• No model satisfies Quantum Bound but violates other properties of quantum theory

• New postulate to derive QT through performances for information tasks!

• Performance for state discrimination characterize the performances for all other tasks!
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Open Problems

1 Extension to the hypothesis testing and n-shot asymptotic setting
▶ Instead of the sum of errors, can we deal with each types of errors Tr ρ0M1 and Tr ρ1M0

▶ What is the general asymptotic rate?

2 Relaxation of the condition about the existence of isomophism
▶ In this work, the condition of isomophism to Q-like model (dim(V) = d2) is necessary to deal

with trace norm
▶ We need more general measure of the performance for state discrimination
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