
Copyright 2020 NTT CORPORATION

Optimal convex approximation of 
quantum superposition

NTT Communication Science Laboratories

Seiseki Akibue, Seiichiro Tani

NICT Quantum ICT Laboratory

Go Kato
arXiv: 2301.06307
npj quantum info. 10, 3 (2024)

Quantum TUT workshop 2024



Copyright 2020 NTT CORPORATION /26

Background

• Quantum superposition enables us to access huge computational 
space. ( -qubit pure state: )

• Superposition  convex combination (=probabilistic mixture)
‣ Pure state is not a convex combination of distinct states. 
‣ Unitary trans. is not a convex combination of distinct processes.

N α0⋯0 |0⋯0⟩ + α0⋯1 |0⋯1⟩ + ⋯α1⋯1 |1⋯1⟩ ≃ ℂ2N

≠

2
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Background

• Superposition  convex combination (=probabilistic mixture)
‣ Pure state is not a convex combination of distinct states. 
‣ Unitary trans. is not a convex combination of distinct processes.

• However, the difference cannot be perfectly distinguished with a 
finite number of copies.

≠

3

ρ = | + ⟩⟨ + |

ρ =
1
2

( |0⟩⟨0 | + |1⟩⟨1 | )
orρ
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Background

• This raises the question, “Can we improve an approximation of a 
target pure state by using a convex combination of available states?”

4

Target pure state
(Superposition of available states)

|ϕ⟩ = α0 |ψ0⟩ + α1 |ψ1⟩ + α2 |ψ2⟩ ≃

Available states

ψ0 Convex combination
2

∑
x=0

p(x)ψx

Improve approximation?

ψ1

ψ2
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Background|compilation

• In FTQC, we have noiseless gate operations, called elementary 
gates. They vary depending on the encoding of the logical qubits, 
e.g., Clifford+T for the surface code.

• It is important to systematically convert a given unitary trans. into a 
quantum circuit consisting of elementary gates.

5

Unitary trans. representing a 
quantum algorithm

Compilation 
(=systematic conversion)

Υ
H

S
H

S
T

H

T

H

Quantum circuit consisting of 
elementary gates
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Background|compilation

• Example: compilation by using one kind of elementary gate.

6

Target unitary trans.

Compilation

Quantum circuit consisting one kind of elementary gate

Final goal until 2016: Find the smallest circuit to implement the target unitary trans. 
within a desired approximation error.

Rz(θ ) = (1 0
0 eiθ) (1 0

0 eiθ0) (1 0
0 eiθ0) (1 0

0 eiθ0) (1 0
0 eiθ0)

θ0

θ0

Implementable angles  with fewer than 5 
elementary gates (blue dots)

θ

The set of implementable 
unitary trans. forms a finer -net 
if one enlarges the circuit size.

ϵ

Implementable angles  with fewer than 300 
elementary gates (blue dots)

θ
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Background|compilation

• In 2016, Campbell and Hastings have independently found that the 
approximation error can be reduced by probabilistically sampling unitary trans.
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Background|compilation

• Approximating a target unitary trans. by using a convex combination 
is better.

8

≃

Available unitary trans.
(e.g. unitary trans. implementable by  gates.)N( ≤ 300)

Υ0 Convex combination
2

∑
x=0

p(x)Υx

Improve approximation!

Υ1

Υ2

Target unitary trans.

Υ
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Summary of our contributions

9

In this talk, we show 
(1) tight bounds on the reduction rate of the approximation error by using optimal , 
(2) a construction of an efficient algorithm to optimize , 
(3) several numerical demonstrations, 
(4) Other applications of our method for analyzing resource measure.

p(x)
p(x)

Open problem: What is the fundamental limitation of the unitary (state) approximation by 
using their convex combinations? 
Difficulty: How can we optimize  in the convex combination? Only a few optimal solutions 
have been known since the high-dimensional geometry of unitary and state is complicated.

p(x)
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Convex approximation of unitary
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We have derived the tight inequalities on the reduction rate of the approximation error

The approximation error by using the 
optimal convex combination

Available unitary trans.

The worst-case approximation error by 
using a single available unitary trans.

Theorem 1. For any unitary  and set of unitaries  acting on , it holds thatΥ {Υx}x ℂd

4δΥ

d (1 −
δΥ

d ) ≤ min
p

1
2

Υ − ∑
x

p(x)Υx

⋄

≤ ϵ2
δΥ = 1 − 1 − ϵ2

Υ

ϵΥ = min
x

1
2

Υ − Υx
⋄

ϵ = max
Υ

ϵΥ

with

Target unitary trans.

≃
2ϵ2

Υ

d



Copyright 2020 NTT CORPORATION /26

Convex approximation of unitary
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Corollary 1. For any set of unitaries  acting on , it holds that{Υx}x ℂ2

max
Υ

min
p

1
2

Υ − ∑
x

p(x)Υx

⋄

= (max
Υ

min
x

1
2

Υ − Υx
⋄)

2

As a corollary of Theorem 1, we obtain
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Convex approximation of unitary
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Corollary 1. For any set of unitaries  acting on , it holds that{Υx}x ℂ2

max
Υ

min
p

1
2

Υ − ∑
x

p(x)Υx

⋄

= (max
Υ

min
x

1
2

Υ − Υx
⋄)

2

As a corollary of Theorem 1, we obtain

When  forms an -net of unitary transformations, its convex hull forms an -net of 
unitary transformations.

{Υx}x ϵ ϵ2

The optimal convex approximation reduces the worst-case approximation error quadratically.
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Why is convex combination useful?
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Let us define the probability distribution by a CPTP map  in a circuit  as

.

Γ C

q(C, Γ) =
tr[M1(Γ ⊗ id )(ρ)]
tr[M2(Γ ⊗ id )(ρ)]

⋯

1
2

Υ − ∑
x

p(x)Υx

⋄

= max
C

1
2

q(C, Υ) − ∑
x

p(x)q (C, Υx)
1

ρ {Mm}m
Γ

C

Then, we obtain

1
2

Υ − Υx
⋄

= max
C

1
2

q(C, Υ) − q (C, Υx)
1
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 is designed such that  cancels out each other in  for any .p(x) q(C, Υx) ∑
x

p(x)q(C, Υx) C
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C = C1 C = C2

target distribution 
distribution 
distribution 

q(C, Υ)
q(C, Υ1)
q(C, Υ2)
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Convex approximation of state

14

(a) (b)Quadratic reduction of the approximation error 
when we synthesize a target qubit state by 
using the six eigenstates of Pauli ops. can be 
verified by using this theorem with

(a)

(b)

G = {𝕀}, SG = {ϕ : |ϕ⟩ ∈ ℂ2}

G = {𝕀, θ}, SG = {ϕ : |ϕ⟩ = cos t |0⟩ + sin t |1⟩}

Complex conjugation

Theorem 2.

Worst approximation error 
caused by probabilistic synthesis

Worst approximation error
caused by deterministic synthesis
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How can we obtain optimal ?p(x)

We have to solve minimax optimization: .

This is analytically intractable from previous studies. In contrast, we show 
that this can be algorithmically solved by an SDP.
However, we still need -net  consisting of available states to 
achieve the guaranteed quadratic reduction of the approximation error. 
• In the context of compilation, we can obtain the -net by using a conventional compiler.

• However,  is too large for efficient compilation.

min
p

1
2

ϕ − ∑
x

p (x)ϕx
1

= min
p

max
0≤M≤𝕀

t r [M (ϕ − ∑
x

p (x)ϕx)]

ϵ {ϕx}x∈X

ϵ

|X | = Ω ( 1
ϵ )

15
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How can we obtain optimal ?p(x)

By exploiting a spherical representation of single-qubit unitary 
transformations, we obtain the following lemma.

16

Υ

Υ1

Υ2

-ball around (2ϵ) Υ

Lemma 1. Optimal  that can be 
obtained by mixing an -net  is 
attainable by mixing the intersection of 

 and the -ball around .

p(x)
ϵ S

S (2ϵ) Υ

The size of the intersection is a constant 
independent from .ϵ
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Construction of a probabilistic compiler

Efficient probabilistic synthesis algorithm for single qubit unitary trans.

17

INPUT: target unitary , approximation error 

OUTPUT: gate sequence realizing  according to 

Υ ϵ
Υx p(x)

Theorem 3. There exists a probabilistic state synthesis algorithm that calls 
a deterministic state synthesis algorithm constant times such that
Efficiency: runtime is 

Quadratic improvement: the approximation error achieved by this algorithm 
satisfies  while .

polylog ( 1
ϵ )

1
2

Υ − ∑
x

p(x)Υx
⋄

≤ ϵ2 min
x

1
2

Υ − Υx
⋄

≤ ϵ

In the algorithm, we call a conventional compiler with approximation error . 
Then, we can achieve approximation error  by probabilistic compilation

ϵ
ϵ2
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Numerical demonstrations
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Theorem 1. For any unitary  and set of unitaries  acting on , it holds thatΥ {Υx}x ℂd

4δΥ

d (1 −
δΥ

d ) ≤ min
p

1
2

Υ − ∑
x

p(x)Υx

⋄

≤ ϵ2
δΥ = 1 − 1 − ϵ2

Υ

ϵΥ = min
x

1
2

Υ − Υx
⋄

ϵ = max
Υ

ϵΥ

with

Remaining problems:

• Can we achieve (more than if ) quadratic reduction compared to  for 
randomly sampled ?

• Does Lemma 1 hold for ?

d > 2 ϵΥ
Υ

d > 2

≃
2ϵ2

Υ

d
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Numerical demonstrations

19

Quadratic improvement of the 
actual approximation error

Available unitary operators 
=        randomly sampled U(2)

Quadratic improvement of the 
actual approximation error

Available unitary operators 
=        randomly sampled U(4)
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ϵprob
Υ (ϵ′ ) := min

p

1
2

Υ − ∑
x∈X(ϵ′ )

p(x)Υx

⋄

X(ϵ′ ) = {x :
1
2

Υ − Υx
⋄

≤ ϵ′ }
Numerics supports all the remaining problems.
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Numerical demonstrations
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Halve the T-count for compiling randomly sampled single-qubit unitary operations.

Approximation error ϵ

#T ≃ 9 log2 ( 1
ϵ )

#T ≃ 9 log2 ( 1

ϵ ) = 4.5 log2 ( 1
ϵ )

Probabilistic compilation

joint work with N. Yoshioka, Y. Suzuki, S. Endo, and Y. Tokunaga

Conventional (=deterministic) compilation

[RS compiler]
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Numerical demonstrations
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Halve the T-count for generating randomly sampled pure states.

#T ≃ 3 log2 ( 1
ϵ )

#T ≃ 3 log2 ( 1

ϵ ) = 1.5 log2 ( 1
ϵ )

T-count

deterministic synthesis

probabilistic synthesis
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ε

Target state: cos θ |0⟩ + sin θ |1⟩

Probabilistic compilation

Conventional (=deterministic) compilation

[RS compiler]
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Applications|Entanglement measure
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We show an general lemma about the optimal convex approximation of states to 
obtain Theorem 2. M. F. Sacchi, PRA 96, 042325 (2017)

Theorem 2.

Our general lemma contributes to the original motivation of the optimal 
convex approximation, quantifying quantum entanglement.
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Applications|Entanglement measure

Exact formulas about entanglement measure w.r.t. the trace norm

23

Proposition [conjectured in A. Girardin et al., PRR 4, 023238 (2022)]
The trace norm between the Werner state  (the isotropic state ) 
and SEP is given by

ρWER
q ρISO

q

This conjecture is proven by using a lemma for proving Thm.2 

with  and .G = {U ⊗ U} (G = {U ⊗ U*}) {ϕx}x = {ϕ ⊗ ψ}

Theorem 2.
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Applications|Entanglement measure

Exact formulas about entanglement measure w.r.t. the trace norm
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Proposition [conjectured in A. Girardin et al., PRR 4, 023238 (2022)]
The trace norm between the Werner state  (the isotropic state ) 
and SEP is given by

ρWER
q ρISO

q

Note that we can compute these values by observing the closest separable state  is 
also a Werner or isotropic state.

However, our technique does NOT need to find the closest separable state. Moreover, it 
includes proof for the region of  where a Werner or isotropic state is separable.

Thus, our technique has an advantage when the closest separable state is unknown.

σ

q
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Applications|Entanglement measure

Alternate succinct proof for the coincidence between entanglement and coherence

25

Proposition [J. Chen et al., PRA 94, 042313 (2016)]
Entanglement and coherence measures w.r.t. the trace norm about pure states 
coincide, i.e., 

     where 

This is also proven by using a lemma for proving Thm.2.

Theorem 2.
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Conclusion & Open problem
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■ We provide the fundamental limitations of convex approximation of unitary trans. and 
pure states. 

■ We construct an efficient algorithm to find the optimal probabilistic mixture. 

■ Our algorithm is compatible with many conventional deterministic compilers. It is 
sufficient to call a deterministic compiler constant times to achieve the optimal 
probabilistic compilation. 

■ The reduction rate of the circuit size depends on which deterministic compiler we call 
as a subroutine in our probabilistic compiler.  
(For the RS compiler, ~50% reduction is possible. For the SK compiler, ~85% reduction is possible.) 

■ Combination with a compiler used in Hamiltonian simulation such as Suzuki-Trotter 
decomposition would be promising.


