

Optimal convex approximation of quantum superposition

Quantum TUT workshop 2024

NTT Communication Science Laboratories

Seiseki Akibue, Seiichiro Tani

NICT Quantum ICT Laboratory

Go Kato

Copyright 2020 NTT CORPORATION

arXiv: 2301.06307 npj quantum info. 10, 3 (2024)

Copyright 2020 NTT CORPORATION

Background

2 /26

Pure state is not a convex combination of distinct states.

Unitary trans. is not a convex combination of distinct processes.

- • Superposition \neq convex combination (=probabilistic mixture)

Background

- Superposition \neq convex combination (=probabilistic mixture)
 - Pure state is not a convex combination of distinct states.
 - Unitary trans. is not a convex combination of distinct processes.
- However, the difference cannot be perfectly distinguished with a finite number of copies.

$$\rho \longrightarrow \rho = |+\rangle\langle +|$$
or
$$\rho = \frac{1}{2}(|0\rangle\langle 0| + |1\rangle\langle 1|)$$

Copyright 2020 NTT CORPORATION

Available states

Background

Target pure state

 This raises the question, "Can we improve an approximation of a target pure state by using a convex combination of available states?"

Improve approximation?

- In FTQC, we have noiseless gate operations, called elementary gates. They vary depending on the encoding of the logical qubits, e.g., Clifford+T for the surface code.
- It is important to **systematically** convert a given unitary trans. into a quantum circuit consisting of elementary gates.

Copyright 2020 NTT CORPORATION

• Example: compilation by using one kind of elementary gate.

Final goal until 2016: Find the smallest circuit to implement the target unitary trans. within a desired approximation error.

• In 2016, Campbell and Hastings have independently found that the approximation error can be reduced by probabilistically sampling unitary trans.

 Approximating a target unitary trans. by using a convex combination is better.

Target unitary trans.

Available unitary trans.

(e.g. unitary trans. implementable by $N(\le 300)$ gates.)

Summary of our contributions

Open problem: What is the fundamental limitation of the unitary (state) approximation by using their convex combinations?

Difficulty: How can we optimize p(x) in the convex combination? Only a few optimal solutions have been known since the high-dimensional geometry of unitary and state is complicated.

In this talk, we show

(1) tight bounds on the reduction rate of the approximation error by using optimal p(x),

(2) a construction of **an efficient algorithm to optimize** p(x),

(3) several numerical demonstrations,

(4) Other applications of our method for analyzing resource measure.

Convex approximation of unitary

We have derived the tight inequalities on the reduction rate of the approximation error

Convex approximation of unitary

As a corollary of Theorem 1, we obtain

Corollary 1. For any set of unitaries $\{\Upsilon_x\}_x$ acting on \mathbb{C}^2 , it holds that $\max_{\Upsilon} \min_p \frac{1}{2} \left| \left| \Upsilon - \sum_x p(x)\Upsilon_x \right| \right|_{\diamond} = \left(\max_{\Upsilon} \min_x \frac{1}{2} \left| \left| \Upsilon - \Upsilon_x \right| \right|_{\diamond} \right)^2$

Convex approximation of unitary

As a corollary of Theorem 1, we obtain

Corollary 1. For any set of unitaries $\{\Upsilon_x\}_x$ acting on \mathbb{C}^2 , it holds that $\max_{\Upsilon} \min_p \frac{1}{2} \left| \left| \Upsilon - \sum_x p(x)\Upsilon_x \right| \right|_{\diamond} = \left(\max_{\Upsilon} \min_x \frac{1}{2} \left| \left| \Upsilon - \Upsilon_x \right| \right|_{\diamond} \right)^2$

The optimal convex approximation reduces the worst-case approximation error **quadratically**.

When $\{\Upsilon_x\}_x$ forms an ϵ -net of unitary transformations, its convex hull forms an ϵ^2 -net of unitary transformations.

Why is convex combination useful?

Let us define the probability distribution by a CPTP map Γ in a circuit *C* as

$$q(C,\Gamma) = \begin{pmatrix} tr[M_1(\Gamma \otimes id)(\rho)] \\ tr[M_2(\Gamma \otimes id)(\rho)] \\ \dots \end{pmatrix}.$$

Then, we obtain

$$\frac{1}{2} \left| \left| \Upsilon - \Upsilon_{x} \right| \right|_{*} = \max_{C} \frac{1}{2} \left| \left| q(C,\Upsilon) - q\left(C,\Upsilon_{x}\right) \right| \right|_{1} \qquad \frac{1}{2} \left| \left| \Upsilon - \sum_{x} p(x)\Upsilon_{x} \right| \right|_{*} = \max_{C} \frac{1}{2} \left| \left| q(C,\Upsilon) - \sum_{x} p(x)q\left(C,\Upsilon_{x}\right) \right| \right|_{1} \\ C = C_{1} \qquad \qquad C = C_{2} \qquad \qquad C = C_{1} \qquad \qquad C = C_{2} \qquad \qquad C = C_{2}$$

Copyright 2020 NTT CORPORATION

Convex approximation of state

14/26

Quadratic reduction of the approximation error when we synthesize a target qubit state by using the six eigenstates of Pauli ops. can be verified by using this theorem with

$$(a)G = \{\mathbb{I}\}, S_G = \{\phi : |\phi\rangle \in \mathbb{C}^2\}$$

(b)
$$G = \{\mathbb{I}, \theta\}, S_G = \{\phi : |\phi\rangle = \cos t |0\rangle + \sin t |1\rangle\}$$

Complex conjugation

Theorem 2. Let $S_G := \{\phi : \forall U \in G, [U, \phi] = 0\}$ be the set of pure states invariant
under a subgroup G of unitary and antiunitary operators. If $\{\phi_x\}_x$ is G-invariant,
 $\max_{\phi \in S_G} \min_p \left[\frac{1}{2} || \phi - \sum_x p(x) \phi_x ||_1\right] = \max_{\phi \in S_G} \min_x \left(\frac{|1}{2} || \phi - \phi_x ||_1|\right)^2$
Worst approximation error
caused by probabilistic synthesisWorst approximation error
caused by deterministic synthesis

How can we obtain optimal p(x)? **(9) NTT**

We have to solve minimax optimization: $\min_{p} \frac{1}{2} \left| \left| \phi - \sum_{x} p(x) \phi_{x} \right| \right|_{1} = \min_{p} \max_{0 \le M \le 1} tr \left[M \left(\phi - \sum_{x} p(x) \phi_{x} \right) \right].$

This is analytically intractable from previous studies. In contrast, we show that this can be algorithmically solved by an **SDP**.

However, we still need ϵ -net $\{\phi_x\}_{x \in X}$ consisting of available states to achieve the guaranteed quadratic reduction of the approximation error.

- In the context of compilation, we can obtain the ϵ -net by using a conventional compiler.
- However, $|X| = \Omega\left(\frac{1}{\epsilon}\right)$ is too large for efficient compilation.

How can we obtain optimal p(x)? **(9) NTT**

By exploiting a spherical representation of single-qubit unitary transformations, we obtain the following lemma.

Lemma 1. Optimal p(x) that can be obtained by mixing an ϵ -net S is attainable by mixing the <u>intersection</u> of S and the (2ϵ)-ball around Υ .

The size of the intersection is a **constant** independent from ϵ .

Construction of a probabilistic compiler

Efficient probabilistic synthesis algorithm for single qubit unitary trans.

INPUT: target unitary Υ , approximation error ϵ

OUTPUT: gate sequence realizing Υ_x according to p(x)

Theorem 3. There exists a probabilistic state synthesis algorithm that calls a deterministic state synthesis algorithm constant times such that *Efficiency*: runtime is $polylog\left(\frac{1}{\epsilon}\right)$ *Quadratic improvement*: the approximation error achieved by this algorithm satisfies $\frac{1}{2} \left| \left| \Upsilon - \sum p(x)\Upsilon_x \right| \right|_{\infty} \le \epsilon^2$ while $\min_x \frac{1}{2} \left| \left| \Upsilon - \Upsilon_x \right| \right|_{\infty} \le \epsilon$.

In the algorithm, we call a conventional compiler with approximation error ϵ . Then, we can achieve approximation error ϵ^2 by probabilistic compilation

Remaining problems:

- Can we achieve (more than if d>2) quadratic reduction compared to ϵ_{Υ} for randomly sampled Υ ?
- Does Lemma 1 hold for d > 2?

Theorem 1. For any unitary Υ and set of unitaries $\{\Upsilon_x\}_x$ acting on \mathbb{C}^d , it holds that $\frac{4\delta_{\Upsilon}}{d}\left(1-\frac{\delta_{\Upsilon}}{d}\right) \leq \min_p \frac{1}{2} \left| \left| \Upsilon - \sum_x p(x)\Upsilon_x \right| \right|_{\diamond} \leq \epsilon^2 \quad \text{with} \quad \begin{cases} \epsilon_{\Upsilon} = \min_x \frac{1}{2} \left| \left| \Upsilon - \Upsilon_x \right| \right|_{\diamond} \\ \delta_{\Upsilon} = 1 - \sqrt{1-\epsilon_{\Upsilon}^2} \\ \epsilon = \max_{\Upsilon} \epsilon_{\Upsilon} \end{cases}$ Copyright 202 mergers on \mathbb{C}^d .

0.06

 1.4ϵ

0.08

10

0.50

0.55

0.60

0.65

0.70

0.75

 1.4ϵ

0.80

0.10

19/26

Copyright 2020 NTT CORPORATION

0.02

0.04

1.0

20/26

Halve the T-count for compiling randomly sampled single-qubit unitary operations.

Conventional (=deterministic) compilation

$$\#T \simeq 9 \log_2\left(\frac{1}{\epsilon}\right) \qquad \text{[RS comp}$$

oiler]

Probabilistic compilation

$$\#T \simeq 9 \log_2\left(\frac{1}{\sqrt{\epsilon}}\right) = 4.5 \log_2\left(\frac{1}{\epsilon}\right)$$

Copyright 2020 NTT CORPORATION

Halve the T-count for generating randomly sampled pure states.

We show an general lemma about the optimal convex approximation of states to obtain Theorem 2. M. F. Sacchi, PRA 96, 042325 (2017)

Theorem 2. Let $S_G := \{\phi : \forall U \in G, [U, \phi] = 0\}$ be the set of pure states invariant under a subgroup G of unitary and antiunitary operators. If $\{\phi_x\}_x$ is G-invariant, $\max_{\phi \in S_G} \min_p \left| \frac{1}{2} \right| |\phi - \sum_x p(x)\phi_x| |_1| = \max_{\phi \in S_G} \min_x \left(\frac{|1|}{2} ||\phi - \phi_x||_1 \right)^2$

Our general lemma contributes to the original motivation of the optimal convex approximation, quantifying quantum entanglement.

Exact formulas about entanglement measure w.r.t. the trace norm

Proposition [conjectured in A. Girardin et al., PRR 4, 023238 (2022)] The trace norm between the Werner state ρ_q^{WER} (the isotropic state ρ_q^{ISO}) and SEP is given by

$$\min_{\sigma \in \mathbf{SEP}} ||\rho_q^{WER} - \sigma||_1 = 2q - 1, \quad \min_{\sigma \in \mathbf{SEP}} ||\rho_q^{ISO} - \sigma||_1 = 2\frac{\alpha - 1}{d^2} \left(q - \frac{1}{d+1}\right)$$

This conjecture is proven by using a lemma for proving Thm.2

with $G = \{U \otimes U\}$ $(G = \{U \otimes U^*\})$ and $\{\phi_x\}_x = \{\phi \otimes \psi\}$.

Theorem 2. Let $S_G := \{\phi : \forall U \in G, [U, \phi] = 0\}$ be the set of pure states invariant under a subgroup G of unitary and antiunitary operators. If $\{\phi_x\}_x$ is G-invariant, $\max_{\phi \in S_G} \min_{p} \left[\frac{1}{2} ||\phi - \sum_x p(x)\phi_x||_{1^1} = \max_{\phi \in S_G} \min_x \left(\frac{1}{2} ||\phi - \phi_x||_{1^1}\right)^2$

Exact formulas about entanglement measure w.r.t. the trace norm

 $\begin{array}{l} \textbf{Proposition} \ [\text{conjectured in A. Girardin et al., PRR 4, 023238 (2022)}] \\ \text{The trace norm between the Werner state } \rho_q^{WER} \ (\text{the isotropic state } \rho_q^{ISO}) \\ \text{and SEP is given by} \\ \min_{\sigma \in \textbf{SEP}} ||\rho_q^{WER} - \sigma||_1 = 2q - 1, \quad \min_{\sigma \in \textbf{SEP}} ||\rho_q^{ISO} - \sigma||_1 = 2\frac{d^2 - 1}{d^2} \left(q - \frac{1}{d+1}\right) \end{array}$

Note that we can compute these values by observing the closest separable state σ is also a Werner or isotropic state.

However, our technique does NOT need to find the closest separable state. Moreover, **it includes proof** for the region of *q* where a Werner or isotropic state is separable.

Thus, our technique has an advantage when the closest separable state is unknown.

Alternate succinct proof for the coincidence between entanglement and coherence

Proposition [J. Chen et al., PRA 94, 042313 (2016)] Entanglement and coherence measures w.r.t. the trace norm about pure states coincide, i.e., $\min_{\sigma \in \mathbf{SEP}} ||\Phi - \sigma||_1 = \min_{\rho \in I} ||\phi - \rho||_1 \quad \text{where} \quad \begin{cases} |\Phi\rangle = \sum_i \alpha_i |i\rangle, |\phi\rangle = \sum_i \alpha_i |i\rangle \\ I = conv(|i\rangle\langle i|) \end{cases}$

This is also proven by using a lemma for proving Thm.2.

Theorem 2. Let $S_G := \{\phi : \forall U \in G, [U, \phi] = 0\}$ be the set of pure states invariant under a subgroup G of unitary and antiunitary operators. If $\{\phi_x\}_x$ is G-invariant, $\max_{\phi \in S_G} \min_p \left| \frac{1}{2} ||\phi - \sum_x p(x)\phi_x||_1 \right| = \max_{\phi \in S_G} \min_x \left(\frac{|1|}{2} ||\phi - \phi_x||_1 \right)^2$

Conclusion & Open problem

- We provide the fundamental limitations of convex approximation of unitary trans. and pure states.
- We construct an efficient algorithm to find the optimal probabilistic mixture.
- Our algorithm is compatible with many conventional deterministic compilers. It is sufficient to call a deterministic compiler constant times to achieve the optimal probabilistic compilation.
- The reduction rate of the circuit size depends on which deterministic compiler we call as a subroutine in our probabilistic compiler.

(For the RS compiler, ~50% reduction is possible. For the SK compiler, ~85% reduction is possible.)

 Combination with a compiler used in Hamiltonian simulation such as Suzuki-Trotter decomposition would be promising.